Difference between revisions of "009C Sample Final 2, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 19: Line 19:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we need to calculate &nbsp;<math style="vertical-align: -14px">\frac{dx}{dt}</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{dy}{dt}.</math>
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -14px">x=t^2,~\frac{dx}{dt}=2t.</math>
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -14px">y=t^3,~\frac{dy}{dt}=3t^2.</math>
 
|-
 
|-
|
+
|Using the formula in Foundations, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_1^2 \sqrt{(2t)^2+(3t^2)^2}~dt.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{L} & = & \displaystyle{\int_1^2 \sqrt{4t^2+9t^4}~dt}\\
 +
&&\\
 +
& = & \displaystyle{\int_1^2 \sqrt{t^2(4+9t^2)}~dt}\\
 +
&&\\
 +
& = & \displaystyle{\int_1^2 t\sqrt{4+9t^2}~dt.}\\
 +
\end{array}</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, we use &nbsp;<math>u</math>-substitution.
 +
|-
 +
|Let &nbsp;<math>u=4+9t^2.</math>&nbsp;
 +
|-
 +
|Then, &nbsp;<math>du=18tdt</math>&nbsp; and &nbsp;<math>\frac{du}{18}=tdt.</math>
 +
|-
 +
|Also, since this is a definite integral, we need to change the bounds of integration.
 +
|-
 +
|We have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>u_1=4+9(1)^2=13</math> and <math>u_2=4+9(2)^2=40.</math>
 +
|-
 +
|Hence,
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{L} & = & \displaystyle{\frac{1}{18}\int_{13}^{40} \sqrt{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{27} u^{\frac{3}{2}}\bigg|_{13}^{40}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{27}(40)^{\frac{3}{2}}-\frac{1}{27}(13)^{\frac{3}{2}}.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 38: Line 76:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp;  
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{27}(40)^{\frac{3}{2}}-\frac{1}{27}(13)^{\frac{3}{2}}</math>
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 21:31, 4 March 2017

Find the length of the curve given by

Foundations:  
The formula for the arc length    of a parametric curve with    is

       


Solution:

Step 1:  
First, we need to calculate    and  
Since  
Since  
Using the formula in Foundations, we have

       

Step 2:  
Now, we have

       

Step 3:  
Now, we use  -substitution.
Let   
Then,    and  
Also, since this is a definite integral, we need to change the bounds of integration.
We have
        and
Hence,
       


Final Answer:  
       

Return to Sample Exam