Difference between revisions of "009C Sample Final 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 32: Line 32:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We use the Ratio Test to determine the radius of convergence.
 
|-
 
|-
|
+
|We have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{(-1)^{n+1}(x)^{n+1}}{(n+1)}\frac{n}{(-1)^n(x)^n}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|(-1)(x)\frac{n}{n+1}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} |x|\frac{n}{n+1}}\\
 +
&&\\
 +
& = & \displaystyle{|x|\lim_{n\rightarrow \infty} \frac{n}{n+1}}\\
 +
&&\\
 +
& = & \displaystyle{|x|.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 42: Line 53:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|The Ratio Test tells us this series is absolutely convergent if &nbsp;<math style="vertical-align: -5px">|x|<1.</math>
 
|-
 
|-
|
+
|Hence, the Radius of Convergence of this series is &nbsp;<math style="vertical-align: -1px">R=1.</math>
 
|}
 
|}
  
Line 71: Line 82:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The radius of convergence is &nbsp;<math style="vertical-align: -1px">R=1.</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)'''  
+
|&nbsp; &nbsp; '''(b)'''  
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 20:58, 4 March 2017

(a) Find the radius of convergence for the power series

(b) Find the interval of convergence of the above series.

Foundations:  
Ratio Test
        Let    be a series and  
        Then,

        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.


Solution:

(a)

Step 1:  
We use the Ratio Test to determine the radius of convergence.
We have

       

Step 2:  
The Ratio Test tells us this series is absolutely convergent if  
Hence, the Radius of Convergence of this series is  

(b)

Step 1:  
Step 2:  


Final Answer:  
    (a)     The radius of convergence is  
    (b)

Return to Sample Exam