Difference between revisions of "009C Sample Final 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|'''1.''' '''Ratio Test'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -7px">\sum a_n</math>&nbsp; be a series and &nbsp;<math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>
 
|-
 
|-
|  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L<1,</math>&nbsp; the series is absolutely convergent.
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L>1,</math>&nbsp; the series is divergent.
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L=1,</math>&nbsp; the test is inconclusive.
 +
|-
 +
|'''2.''' If a series absolutely converges, then it also converges.
 +
|-
 +
|'''3.''' '''Alternating Series Test'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; be a positive, decreasing sequence where &nbsp;<math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math>\sum_{n=1}^\infty (-1)^na_n</math>&nbsp; and &nbsp;<math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; converge.
 
|}
 
|}
  

Revision as of 20:42, 4 March 2017

Determine if the following series converges or diverges. Please give your reason(s).

(a)  

(b)  

Foundations:  
1. Ratio Test
        Let    be a series and  
        Then,

        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.

2. If a series absolutely converges, then it also converges.
3. Alternating Series Test
        Let    be a positive, decreasing sequence where  
        Then,    and  
        converge.


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
For
       
we notice that this series is alternating.
Let  
The sequence    is decreasing since
       
for all  
Step 2:  
Also,
       
Therefore, the series     converges
by the Alternating Series Test.


Final Answer:  
   (a)
   (b)    converges

Return to Sample Exam