Difference between revisions of "009C Sample Final 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 47: Line 47:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|For
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty (-1)^n\frac{1}{n+1},</math>
 
|-
 
|-
|
+
|we notice that this series is alternating.
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -16px"> b_n=\frac{1}{n+1}.</math>
 +
|-
 +
|The sequence &nbsp;<math style="vertical-align: -5px">\{b_n\}</math>&nbsp; is decreasing since
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n+2}<\frac{1}{n+1}</math>
 +
|-
 +
|for all &nbsp;<math style="vertical-align: -3px">n\ge 0.</math>
 
|}
 
|}
  
Line 57: Line 65:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Also,
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{n+1}=0.</math>
 +
|-
 +
|Therefore, the series &nbsp;<math>\sum_{n=1}^\infty (-1)^n\frac{1}{n+1}</math> &nbsp; converges
 
|-
 
|-
|
+
|by the Alternating Series Test.
 
|}
 
|}
  
Line 68: Line 80:
 
|&nbsp;&nbsp; '''(a)'''  
 
|&nbsp;&nbsp; '''(a)'''  
 
|-
 
|-
|&nbsp;&nbsp; '''(b)'''  
+
|&nbsp;&nbsp; '''(b)''' &nbsp;&nbsp; converges
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 20:40, 4 March 2017

Determine if the following series converges or diverges. Please give your reason(s).

(a)  

(b)  

Foundations:  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
For
       
we notice that this series is alternating.
Let  
The sequence    is decreasing since
       
for all  
Step 2:  
Also,
       
Therefore, the series     converges
by the Alternating Series Test.


Final Answer:  
   (a)
   (b)    converges

Return to Sample Exam