Difference between revisions of "009C Sample Final 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 59: Line 59:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We begin by using partial fraction decomposition. Let
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{(2x-1)(2x+1)}=\frac{A}{2x-1}+\frac{B}{2x+1}.</math>
 
|-
 
|-
|
+
|If we multiply this equation by &nbsp;<math>(2x-1)(2x+1),</math>&nbsp; we get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>1=A(2x+1)+B(2x-1).</math>
 +
|-
 +
|If we let &nbsp;<math>x=\frac{1}{2},</math>&nbsp; we get &nbsp;<math>A=\frac{1}{2}.</math>
 +
|-
 +
|If we let &nbsp;<math>x=\frac{-1}{2},</math>&nbsp; we get &nbsp;<math>B=\frac{-1}{2}.</math>
 +
|-
 +
|So, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\sum_{n=1}^\infty \frac{1}{(2n-1)(2n+1)}} & = & \displaystyle{\sum_{n=1}^\infty \frac{\frac{1}{2}}{2n-1}+\frac{\frac{-1}{2}}{2n+1}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2} \sum_{n=1}^\infty \frac{1}{2n-1}-\frac{1}{2n+1}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 69: Line 83:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we look at the partial sums, &nbsp;<math>s_n</math>&nbsp; of this series.
 +
|-
 +
|First, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_1=\frac{1}{2}\bigg(1-\frac{1}{3}\bigg).</math>
 +
|-
 +
|Also, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{s_2} & = & \displaystyle{\frac{1}{2}\bigg(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}\bigg(1-\frac{1}{5}\bigg)}
 +
\end{array}</math>
 +
|-
 +
|and
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{s_3} & = & \displaystyle{\frac{1}{2}\bigg(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}\bigg(1-\frac{1}{7}\bigg).}
 +
\end{array}</math>
 +
|-
 +
|If we compare &nbsp;<math>s_1,s_2,s_3,</math>&nbsp; we notice a pattern.
 +
|-
 +
|We have &nbsp;<math>s_n=\frac{1}{2}\bigg(1-\frac{1}{2n+1}\bigg).</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, to calculate the sum of this series we need to calculate
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty} s_n.</math>
 +
|-
 +
|We have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty} s_n} & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{1}{2}\bigg(1-\frac{1}{2n+1}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}.}
 +
\end{array}</math>
 
|-
 
|-
|
+
|Since the partial sums converge,  the series converges and the sum of the series is &nbsp;<math>\frac{1}{2}.</math>
 
|}
 
|}
  
Line 80: Line 134:
 
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;<math>\frac{8}{3}</math>
 
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;<math>\frac{8}{3}</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)'''  
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;<math>\frac{1}{2}</math>
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:53, 4 March 2017

For each of the following series, find the sum if it converges. If it diverges, explain why.

(a)  

(b)  

Foundations:  
1. The sum of a convergent geometric series is  
        where    is the ratio of the geometric series
        and    is the first term of the series.
2. The  th partial sum,    for a series    is defined as

       


Solution:

(a)

Step 1:  
Let    be the  th term of this sum.
We notice that
    &nbsp,     and  
So, this is a geometric series with  
Since    this series converges.
Step 2:  
Hence, the sum of this geometric series is

       

(b)

Step 1:  
We begin by using partial fraction decomposition. Let
       
If we multiply this equation by    we get
       
If we let    we get  
If we let    we get  
So, we have
       
Step 2:  
Now, we look at the partial sums,    of this series.
First, we have
       
Also, we have
       
and
       
If we compare    we notice a pattern.
We have  
Step 3:  
Now, to calculate the sum of this series we need to calculate
       
We have
       
Since the partial sums converge, the series converges and the sum of the series is  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam