Difference between revisions of "009C Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> &nbsp; and <math>\lim_{x\rightarrow \infty} g(x)</math> &nbsp; are both zero or both &nbsp; <math style="vertical-align: -1px">\pm \infty .</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that &nbsp;<math>\lim_{x\rightarrow \infty} f(x)</math> &nbsp; and &nbsp;<math>\lim_{x\rightarrow \infty} g(x)</math> &nbsp; are both zero or both &nbsp; <math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;If <math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> &nbsp; is finite or &nbsp; <math style="vertical-align: -4px">\pm \infty ,</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;If &nbsp;<math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> &nbsp; is finite or &nbsp; <math style="vertical-align: -4px">\pm \infty ,</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;then &nbsp;<math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
|}
  
Line 109: Line 109:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|Since &nbsp;<math>\ln y= -1,</math> we know
+
|Since &nbsp;<math>\ln y= -1,</math>&nbsp; we know
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e^{-1}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e^{-1}.</math>

Revision as of 18:43, 4 March 2017

Test if the following sequences converge or diverge. Also find the limit of each convergent sequence.

(a)  

(b)  

Foundations:  
L'Hopital's Rule

        Suppose that     and     are both zero or both  

       If     is finite or  

       then  


Solution:

(a)

Step 1:  
First, we notice that    has the form  
So, we can use L'Hopital's Rule. To begin, we write
       
Step 2:  
Now, using L'Hopital's rule, we get
       

(b)

Step 1:  
Let

       

We then take the natural log of both sides to get
       
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form  
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since    we know
       


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam