Difference between revisions of "009C Sample Final 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 56: | Line 56: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |Let |
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{y} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.} | ||
+ | \end{array}</math> | ||
|- | |- | ||
− | | | + | |We then take the natural log of both sides to get |
|- | |- | ||
− | | | + | | <math>\ln y = \ln\bigg(\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n\bigg).</math> |
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |We can interchange limits and continuous functions. | ||
+ | |- | ||
+ | |Therefore, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\ln y} & = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(\frac{n}{n+1}\bigg)^n}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(\frac{n}{n+1}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Now, this limit has the form <math style="vertical-align: -13px">\frac{0}{0}.</math> | ||
+ | |- | ||
+ | |Hence, we can use L'Hopital's Rule to calculate this limit. | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 3: | ||
+ | |- | ||
+ | |Now, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(\frac{x}{x+1}\bigg)}{\frac{1}{x}}}\\ | ||
+ | &&\\ | ||
+ | & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{x+1}{x}\frac{1}{(x+1)^2}}{\big(-\frac{1}{x^2}\big)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-x^2}{x(x+1)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-1.} | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 4: | ||
+ | |- | ||
+ | |Since <math>\ln y= -1,</math> we know | ||
+ | |- | ||
+ | | <math>y=e^{-1}.</math> | ||
|} | |} | ||
Line 77: | Line 120: | ||
| '''(a)''' <math>1</math> | | '''(a)''' <math>1</math> | ||
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' <math>e^{-1}</math> |
|} | |} | ||
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 18:41, 4 March 2017
Test if the following sequences converge or diverge. Also find the limit of each convergent sequence.
(a)
(b)
Foundations: |
---|
L'Hopital's Rule |
Suppose that and are both zero or both |
If is finite or |
then |
Solution:
(a)
Step 1: |
---|
First, we notice that has the form |
So, we can use L'Hopital's Rule. To begin, we write |
Step 2: |
---|
Now, using L'Hopital's rule, we get |
(b)
Step 1: |
---|
Let
|
We then take the natural log of both sides to get |
Step 2: |
---|
We can interchange limits and continuous functions. |
Therefore, we have |
|
Now, this limit has the form |
Hence, we can use L'Hopital's Rule to calculate this limit. |
Step 3: |
---|
Now, we have |
|
Step 4: |
---|
Since we know |
Final Answer: |
---|
(a) |
(b) |