Difference between revisions of "009C Sample Final 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
::<math>f(x)=e^{-\frac{1}{3}x}</math>
 
::<math>f(x)=e^{-\frac{1}{3}x}</math>
  
<span class="exam">(a) Find a formula for the &nbsp;<math>n</math>th derivative &nbsp;<math>f^{(n)}(x)</math>&nbsp; of &nbsp;<math>f</math>&nbsp; and then find &nbsp;<math>f'(3).</math>
+
<span class="exam">(a) Find a formula for the &nbsp;<math>n</math>th derivative &nbsp;<math style="vertical-align: -5px">f^{(n)}(x)</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; and then find &nbsp;<math style="vertical-align: -5px">f'(3).</math>
  
<span class="exam">(b) Find the Taylor series for &nbsp;<math>f(x)</math>&nbsp; at &nbsp;<math>x_0=3,</math>&nbsp; i.e. write &nbsp;<math>f(x)</math>&nbsp; in the form  
+
<span class="exam">(b) Find the Taylor series for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; at &nbsp;<math style="vertical-align: -5px">x_0=3,</math>&nbsp; i.e. write &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; in the form  
  
 
::<math>f(x)=\sum_{n=0}^\infty a_n(x-3)^n.</math>
 
::<math>f(x)=\sum_{n=0}^\infty a_n(x-3)^n.</math>

Revision as of 18:19, 4 March 2017

Consider the function

(a) Find a formula for the  th derivative    of    and then find  

(b) Find the Taylor series for    at    i.e. write    in the form

Foundations:  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)
   (b)

Return to Sample Exam