Difference between revisions of "009C Sample Final 2, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">Find &nbsp;<math>n</math>&nbsp; such that the Maclaurin polynomial of degree &nbsp;<math>n</math>&nbsp; of &nbsp;<math>f(x)=\cos(x)</math>&nbsp; approximates &nbsp;<math>\cos \frac{\pi}{3}</math>&nbsp; within 0.0001 of the actual value.
+
<span class="exam">Find &nbsp;<math>n</math>&nbsp; such that the Maclaurin polynomial of degree &nbsp;<math>n</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">f(x)=\cos(x)</math>&nbsp; approximates &nbsp;<math style="vertical-align: -13px">\cos \frac{\pi}{3}</math>&nbsp; within 0.0001 of the actual value.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 18:15, 4 March 2017

Find    such that the Maclaurin polynomial of degree    of    approximates    within 0.0001 of the actual value.

Foundations:  


Solution:

Step 1:  
Step 2:  


Final Answer:  
  

Return to Sample Exam