Difference between revisions of "009C Sample Final 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">A curve is given in polar coordinates by  
 
<span class="exam">A curve is given in polar coordinates by  
  
::::::<math>r=1+\cos^2(2\theta)</math>
+
::<math>r=1+\cos^2(2\theta)</math>
  
::<span class="exam">a) Show that the point with Cartesian coordinates <math>(x,y)=\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg)</math> belongs to the curve.
+
<span class="exam">(a) Show that the point with Cartesian coordinates &nbsp;<math>(x,y)=\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg)</math>&nbsp; belongs to the curve.
  
::<span class="exam">b) Sketch the curve.  
+
<span class="exam">(b) Sketch the curve.  
  
::<span class="exam">c) In Cartesian coordinates, find the equation of the tangent line at <math>\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg).</math>
+
<span class="exam">(c) In Cartesian coordinates, find the equation of the tangent line at &nbsp;<math>\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg).</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 22: Line 22:
 
|
 
|
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 64: Line 65:
 
|
 
|
 
|}
 
|}
 +
 +
'''(c)'''
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1: &nbsp;
 +
|-
 +
|
 +
|-
 +
|
 +
|-
 +
|
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|
 +
|-
 +
|
 +
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 71: Line 93:
 
|-
 
|-
 
|&nbsp;&nbsp; '''(b)'''  
 
|&nbsp;&nbsp; '''(b)'''  
 +
|-
 +
|&nbsp;&nbsp; '''(c)'''
 
|}
 
|}
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:59, 4 March 2017

A curve is given in polar coordinates by

(a) Show that the point with Cartesian coordinates    belongs to the curve.

(b) Sketch the curve.

(c) In Cartesian coordinates, find the equation of the tangent line at  

Foundations:  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
   (a)
   (b)
   (c)

Return to Sample Exam