Difference between revisions of "009C Sample Final 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Determine if the following series converges or diverges. Please give your reason(s).
 
<span class="exam"> Determine if the following series converges or diverges. Please give your reason(s).
  
::<span class="exam">a) <math>\sum_{n=1}^{+\infty} \frac{n!}{(2n)!}</math>  
+
<span class="exam">(a) &nbsp;<math>\sum_{n=1}^{+\infty} \frac{n!}{(2n)!}</math>  
  
::<span class="exam">b) <math>\sum_{n=1}^{+\infty} (-1)^n\frac{1}{n+1}</math>
+
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^{+\infty} (-1)^n\frac{1}{n+1}</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 18: Line 18:
 
|
 
|
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 60: Line 61:
 
|
 
|
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 17:54, 4 March 2017

Determine if the following series converges or diverges. Please give your reason(s).

(a)  

(b)  

Foundations:  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)
   (b)

Return to Sample Exam