Difference between revisions of "009C Sample Final 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> For each of the following series, find the sum if it converges. If it diverges, explain why.
 
<span class="exam"> For each of the following series, find the sum if it converges. If it diverges, explain why.
  
::<span class="exam">a) <math>4-2+1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots</math>
+
<span class="exam">(a) &nbsp;<math>4-2+1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots</math>
  
::<span class="exam">b) <math>\sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)}</math>
+
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)}</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 17:39, 4 March 2017

For each of the following series, find the sum if it converges. If it diverges, explain why.

(a)  

(b)  

Foundations:  

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  
Final Answer:  
   (a)
   (b)

Return to Sample Exam