Difference between revisions of "009C Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|'''L'Hopital's Rule'''
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> &nbsp; and <math>\lim_{x\rightarrow \infty} g(x)</math> &nbsp; are both zero or both &nbsp; <math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;If <math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> &nbsp; is finite or &nbsp; <math style="vertical-align: -4px">\pm \infty ,</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
|}
  

Revision as of 17:37, 4 March 2017

Test if the following sequences converge or diverge. Also find the limit of each convergent sequence.

a)
b)
Foundations:  
L'Hopital's Rule

        Suppose that   and   are both zero or both  

       If   is finite or  

       then

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  
Final Answer:  
   (a)
   (b)

Return to Sample Exam