Difference between revisions of "009B Sample Final 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 14: | Line 14: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |'''1.''' The | + | |'''1.''' The surface area <math style="vertical-align: 0px">S</math> of a function <math style="vertical-align: -5px">y=f(x)</math> rotated about the <math style="vertical-align: -4px">y</math>-axis is given by |
|- | |- | ||
| | | | ||
− | <math> | + | <math style="vertical-align: -13px">S=\int 2\pi x\,ds,</math> where <math style="vertical-align: -19px">ds=\sqrt{1+\bigg(\frac{dx}{dy}\bigg)^2}dy.</math> |
|- | |- | ||
− | |'''2.''' The | + | |'''2.''' The formula for the length <math style="vertical-align: 0px">L</math> of a curve <math style="vertical-align: -5px">y=f(x)</math> where <math style="vertical-align: -3px">a\leq x \leq b</math> is |
|- | |- | ||
| | | | ||
− | <math | + | <math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.</math> |
|} | |} | ||
Line 33: | Line 33: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We start by calculating <math>\frac{dx}{dy}.</math> | + | |We start by calculating <math style="vertical-align: -16px">\frac{dx}{dy}.</math> |
|- | |- | ||
− | |Since <math style="vertical-align: - | + | |Since <math style="vertical-align: -17px">x=y^3,~ \frac{dx}{dy}=3y^2.</math> |
|- | |- | ||
− | |Now, we are going to integrate with respect to <math>y.</math> | + | |Now, we are going to integrate with respect to <math style="vertical-align: -3px">y.</math> |
|- | |- | ||
|Using the formula given in the Foundations section, | |Using the formula given in the Foundations section, | ||
Line 47: | Line 47: | ||
&&\\ | &&\\ | ||
& = & \displaystyle{2\pi \int_0^1 y^3 \sqrt{1+9y^4}~dy.} | & = & \displaystyle{2\pi \int_0^1 y^3 \sqrt{1+9y^4}~dy.} | ||
+ | \end{array}</math> | ||
|- | |- | ||
− | |where <math>S</math> is the surface area. | + | |where <math style="vertical-align: 0px">S</math> is the surface area. |
− | |||
|} | |} | ||
Line 55: | Line 55: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we use <math>u</math>-substitution. | + | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
− | |Let <math>u=1+9y^4.</math> | + | |Let <math style="vertical-align: -5px">u=1+9y^4.</math> |
|- | |- | ||
− | |Then, <math>du=36y^3dy</math> and <math>\frac{du}{36}=y^3dy.</math> | + | |Then, <math style="vertical-align: -5px">du=36y^3dy</math> and <math style="vertical-align: -14px">\frac{du}{36}=y^3dy.</math> |
|- | |- | ||
|Also, since this is a definite integral, we need to change the bounds of integration. | |Also, since this is a definite integral, we need to change the bounds of integration. | ||
Line 65: | Line 65: | ||
|We have | |We have | ||
|- | |- | ||
− | | <math>u_1=1+9(0)^4=1</math> and <math>u_2=1+9(1)^4=10.</math> | + | | <math>u_1=1+9(0)^4=1</math> and <math>u_2=1+9(1)^4=10.</math> |
|- | |- | ||
|Thus, we get | |Thus, we get | ||
Line 83: | Line 83: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we calculate <math>\frac{dy}{dx}.</math> | + | |First, we calculate <math style="vertical-align: -15px">\frac{dy}{dx}.</math> |
|- | |- | ||
− | |Since <math>y=1+9x^{\frac{3}{2}},</math> we have | + | |Since <math style="vertical-align: -5px">y=1+9x^{\frac{3}{2}},</math> we have |
|- | |- | ||
| <math>\frac{dy}{dx}=\frac{27\sqrt{x}}{2}.</math> | | <math>\frac{dy}{dx}=\frac{27\sqrt{x}}{2}.</math> | ||
|- | |- | ||
− | |Then, the arc length <math>L</math> of the curve is given by | + | |Then, the arc length <math style="vertical-align: 0px">L</math> of the curve is given by |
|- | |- | ||
| <math>L=\int_1^4 \sqrt{1+\bigg(\frac{27\sqrt{x}}{2}\bigg)^2}~dx.</math> | | <math>L=\int_1^4 \sqrt{1+\bigg(\frac{27\sqrt{x}}{2}\bigg)^2}~dx.</math> | ||
Line 101: | Line 101: | ||
| <math>L=\int_1^4 \sqrt{1+\frac{27^2x}{2^2}}~dx.</math> | | <math>L=\int_1^4 \sqrt{1+\frac{27^2x}{2^2}}~dx.</math> | ||
|- | |- | ||
− | |Now, we use <math>u</math>-substitution. | + | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
− | |Let <math>u=1+\frac{27^2x}{2^2}.</math> | + | |Let <math style="vertical-align: -14px">u=1+\frac{27^2x}{2^2}.</math> |
|- | |- | ||
− | |Then, <math>du=\frac{27^2}{2^2}dx</math> and <math>dx=\frac{2^2}{27^2}du.</math> | + | |Then, <math style="vertical-align: -14px">du=\frac{27^2}{2^2}dx</math> and <math style="vertical-align: -14px">dx=\frac{2^2}{27^2}du.</math> |
|- | |- | ||
|Also, since this is a definite integral, we need to change the bounds of integration. | |Also, since this is a definite integral, we need to change the bounds of integration. | ||
|- | |- | ||
− | |We have | + | |We have |
|- | |- | ||
− | |and <math>u_2=1+\frac{27^2(4)}{2^2}=1+27^2.</math> | + | | <math>u_1=1+\frac{27^2(1)}{2^2}=1+\frac{27^2}{2^2}</math> and <math>u_2=1+\frac{27^2(4)}{2^2}=1+27^2.</math> |
|- | |- | ||
|Hence, we now have | |Hence, we now have | ||
|- | |- | ||
| <math>L=\int_{1+\frac{27^2}{2^2}}^{1+27^2} \frac{2^2}{27^2}u^{\frac{1}{2}}~du.</math> | | <math>L=\int_{1+\frac{27^2}{2^2}}^{1+27^2} \frac{2^2}{27^2}u^{\frac{1}{2}}~du.</math> | ||
− | |||
− | |||
|} | |} | ||
Revision as of 17:25, 4 March 2017
(a) Find the area of the surface obtained by rotating the arc of the curve
between and about the -axis.
(b) Find the length of the arc
between the points and
Foundations: |
---|
1. The surface area of a function rotated about the -axis is given by |
where |
2. The formula for the length of a curve where is |
|
Solution:
(a)
Step 1: |
---|
We start by calculating |
Since |
Now, we are going to integrate with respect to |
Using the formula given in the Foundations section, |
we have |
where is the surface area. |
Step 2: |
---|
Now, we use -substitution. |
Let |
Then, and |
Also, since this is a definite integral, we need to change the bounds of integration. |
We have |
and |
Thus, we get |
(b)
Step 1: |
---|
First, we calculate |
Since we have |
Then, the arc length of the curve is given by |
Step 2: |
---|
Then, we have |
Now, we use -substitution. |
Let |
Then, and |
Also, since this is a definite integral, we need to change the bounds of integration. |
We have |
and |
Hence, we now have |
Step 3: |
---|
Therefore, we have |
Final Answer: |
---|
(a) |
(b) |