Difference between revisions of "009B Sample Final 2, Problem 5"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 14: | Line 14: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | |'''1.''' The | + | |'''1.''' The surface area <math style="vertical-align: 0px">S</math> of a function <math style="vertical-align: -5px">y=f(x)</math> rotated about the <math style="vertical-align: -4px">y</math>-axis is given by |
|- | |- | ||
| | | | ||
| − | <math> | + | <math style="vertical-align: -13px">S=\int 2\pi x\,ds,</math> where <math style="vertical-align: -19px">ds=\sqrt{1+\bigg(\frac{dx}{dy}\bigg)^2}dy.</math> |
|- | |- | ||
| − | |'''2.''' The | + | |'''2.''' The formula for the length <math style="vertical-align: 0px">L</math> of a curve <math style="vertical-align: -5px">y=f(x)</math> where <math style="vertical-align: -3px">a\leq x \leq b</math> is |
|- | |- | ||
| | | | ||
| − | <math | + | <math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.</math> |
|} | |} | ||
| Line 33: | Line 33: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |We start by calculating <math>\frac{dx}{dy}.</math> | + | |We start by calculating <math style="vertical-align: -16px">\frac{dx}{dy}.</math> |
|- | |- | ||
| − | |Since <math style="vertical-align: - | + | |Since <math style="vertical-align: -17px">x=y^3,~ \frac{dx}{dy}=3y^2.</math> |
|- | |- | ||
| − | |Now, we are going to integrate with respect to <math>y.</math> | + | |Now, we are going to integrate with respect to <math style="vertical-align: -3px">y.</math> |
|- | |- | ||
|Using the formula given in the Foundations section, | |Using the formula given in the Foundations section, | ||
| Line 47: | Line 47: | ||
&&\\ | &&\\ | ||
& = & \displaystyle{2\pi \int_0^1 y^3 \sqrt{1+9y^4}~dy.} | & = & \displaystyle{2\pi \int_0^1 y^3 \sqrt{1+9y^4}~dy.} | ||
| + | \end{array}</math> | ||
|- | |- | ||
| − | |where <math>S</math> is the surface area. | + | |where <math style="vertical-align: 0px">S</math> is the surface area. |
| − | |||
|} | |} | ||
| Line 55: | Line 55: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Now, we use <math>u</math>-substitution. | + | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
| − | |Let <math>u=1+9y^4.</math> | + | |Let <math style="vertical-align: -5px">u=1+9y^4.</math> |
|- | |- | ||
| − | |Then, <math>du=36y^3dy</math> and <math>\frac{du}{36}=y^3dy.</math> | + | |Then, <math style="vertical-align: -5px">du=36y^3dy</math> and <math style="vertical-align: -14px">\frac{du}{36}=y^3dy.</math> |
|- | |- | ||
|Also, since this is a definite integral, we need to change the bounds of integration. | |Also, since this is a definite integral, we need to change the bounds of integration. | ||
| Line 65: | Line 65: | ||
|We have | |We have | ||
|- | |- | ||
| − | | <math>u_1=1+9(0)^4=1</math> and <math>u_2=1+9(1)^4=10.</math> | + | | <math>u_1=1+9(0)^4=1</math> and <math>u_2=1+9(1)^4=10.</math> |
|- | |- | ||
|Thus, we get | |Thus, we get | ||
| Line 83: | Line 83: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |First, we calculate <math>\frac{dy}{dx}.</math> | + | |First, we calculate <math style="vertical-align: -15px">\frac{dy}{dx}.</math> |
|- | |- | ||
| − | |Since <math>y=1+9x^{\frac{3}{2}},</math> we have | + | |Since <math style="vertical-align: -5px">y=1+9x^{\frac{3}{2}},</math> we have |
|- | |- | ||
| <math>\frac{dy}{dx}=\frac{27\sqrt{x}}{2}.</math> | | <math>\frac{dy}{dx}=\frac{27\sqrt{x}}{2}.</math> | ||
|- | |- | ||
| − | |Then, the arc length <math>L</math> of the curve is given by | + | |Then, the arc length <math style="vertical-align: 0px">L</math> of the curve is given by |
|- | |- | ||
| <math>L=\int_1^4 \sqrt{1+\bigg(\frac{27\sqrt{x}}{2}\bigg)^2}~dx.</math> | | <math>L=\int_1^4 \sqrt{1+\bigg(\frac{27\sqrt{x}}{2}\bigg)^2}~dx.</math> | ||
| Line 101: | Line 101: | ||
| <math>L=\int_1^4 \sqrt{1+\frac{27^2x}{2^2}}~dx.</math> | | <math>L=\int_1^4 \sqrt{1+\frac{27^2x}{2^2}}~dx.</math> | ||
|- | |- | ||
| − | |Now, we use <math>u</math>-substitution. | + | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
| − | |Let <math>u=1+\frac{27^2x}{2^2}.</math> | + | |Let <math style="vertical-align: -14px">u=1+\frac{27^2x}{2^2}.</math> |
|- | |- | ||
| − | |Then, <math>du=\frac{27^2}{2^2}dx</math> and <math>dx=\frac{2^2}{27^2}du.</math> | + | |Then, <math style="vertical-align: -14px">du=\frac{27^2}{2^2}dx</math> and <math style="vertical-align: -14px">dx=\frac{2^2}{27^2}du.</math> |
|- | |- | ||
|Also, since this is a definite integral, we need to change the bounds of integration. | |Also, since this is a definite integral, we need to change the bounds of integration. | ||
|- | |- | ||
| − | |We have | + | |We have |
|- | |- | ||
| − | |and <math>u_2=1+\frac{27^2(4)}{2^2}=1+27^2.</math> | + | | <math>u_1=1+\frac{27^2(1)}{2^2}=1+\frac{27^2}{2^2}</math> and <math>u_2=1+\frac{27^2(4)}{2^2}=1+27^2.</math> |
|- | |- | ||
|Hence, we now have | |Hence, we now have | ||
|- | |- | ||
| <math>L=\int_{1+\frac{27^2}{2^2}}^{1+27^2} \frac{2^2}{27^2}u^{\frac{1}{2}}~du.</math> | | <math>L=\int_{1+\frac{27^2}{2^2}}^{1+27^2} \frac{2^2}{27^2}u^{\frac{1}{2}}~du.</math> | ||
| − | |||
| − | |||
|} | |} | ||
Revision as of 16:25, 4 March 2017
(a) Find the area of the surface obtained by rotating the arc of the curve
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y^3=x}
between Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1,1)} about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis.
(b) Find the length of the arc
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1+9x^{\frac{3}{2}}}
between the points Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1,10)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (4,73).}
| Foundations: |
|---|
| 1. The surface area Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} of a function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)} rotated about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis is given by |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\int 2\pi x\,ds,} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ds=\sqrt{1+\bigg(\frac{dx}{dy}\bigg)^2}dy.} |
| 2. The formula for the length Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} of a curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\leq x \leq b} is |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.} |
Solution:
(a)
| Step 1: |
|---|
| We start by calculating Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dx}{dy}.} |
| Since Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=y^{3},~{\frac {dx}{dy}}=3y^{2}.} |
| Now, we are going to integrate with respect to |
| Using the formula given in the Foundations section, |
| we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {S}&=&\displaystyle {\int _{0}^{1}2\pi x{\sqrt {1+(3y^{2})^{2}}}~dy}\\&&\\&=&\displaystyle {2\pi \int _{0}^{1}y^{3}{\sqrt {1+9y^{4}}}~dy.}\end{array}}} |
| where is the surface area. |
| Step 2: |
|---|
| Now, we use -substitution. |
| Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u=1+9y^{4}.} |
| Then, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle du=36y^{3}dy} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {du}{36}}=y^{3}dy.} |
| Also, since this is a definite integral, we need to change the bounds of integration. |
| We have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u_{1}=1+9(0)^{4}=1} and |
| Thus, we get |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {S}&=&\displaystyle {{\frac {2\pi }{36}}\int _{1}^{10}{\sqrt {u}}~du}\\&&\\&=&\displaystyle {{\frac {\pi }{27}}u^{\frac {3}{2}}{\bigg |}_{1}^{10}}\\&&\\&=&\displaystyle {{\frac {\pi }{27}}(10)^{\frac {3}{2}}-{\frac {\pi }{27}}.}\end{array}}} |
(b)
| Step 1: |
|---|
| First, we calculate |
| Since Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y=1+9x^{\frac {3}{2}},} we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {dy}{dx}}={\frac {27{\sqrt {x}}}{2}}.} |
| Then, the arc length of the curve is given by |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle L=\int _{1}^{4}{\sqrt {1+{\bigg (}{\frac {27{\sqrt {x}}}{2}}{\bigg )}^{2}}}~dx.} |
| Step 2: |
|---|
| Then, we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle L=\int _{1}^{4}{\sqrt {1+{\frac {27^{2}x}{2^{2}}}}}~dx.} |
| Now, we use -substitution. |
| Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u=1+{\frac {27^{2}x}{2^{2}}}.} |
| Then, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle du={\frac {27^{2}}{2^{2}}}dx} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle dx={\frac {2^{2}}{27^{2}}}du.} |
| Also, since this is a definite integral, we need to change the bounds of integration. |
| We have |
| and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u_{2}=1+{\frac {27^{2}(4)}{2^{2}}}=1+27^{2}.} |
| Hence, we now have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_{1+\frac{27^2}{2^2}}^{1+27^2} \frac{2^2}{27^2}u^{\frac{1}{2}}~du.} |
| Step 3: |
|---|
| Therefore, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{L} & = & \displaystyle{\frac{2^2}{27^2} \bigg(\frac{2}{3}u^{\frac{3}{2}}\bigg)\bigg|_{1+\frac{27^2}{2^2}}^{1+27^2}}\\ &&\\ & = & \displaystyle{\frac{2^3}{3^4} u^{\frac{3}{2}}\bigg|_{1+\frac{27^2}{2^2}}^{1+27^2}}\\ &&\\ & = & \displaystyle{\frac{2^3}{3^4} (1+27^2)^{\frac{3}{2}}-\frac{2^3}{3^4} \bigg(1+\frac{27^2}{2^2}\bigg)^{\frac{3}{2}}.} \end{array}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\pi}{27} (10)^{\frac{3}{2}}-\frac{\pi}{27}} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2^3}{3^4} (1+27^2)^{\frac{3}{2}}-\frac{2^3}{3^4} \bigg(1+\frac{27^2}{2^2}\bigg)^{\frac{3}{2}}} |