Difference between revisions of "009B Sample Final 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' The formula for the length &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; of a curve &nbsp;<math style="vertical-align: -5px">y=f(x)</math>&nbsp; where &nbsp;<math style="vertical-align: -3px">a\leq x \leq b</math>&nbsp; is  
+
|'''1.''' The surface area &nbsp;<math style="vertical-align: 0px">S</math>&nbsp; of a function &nbsp;<math style="vertical-align: -5px">y=f(x)</math>&nbsp; rotated about the &nbsp;<math style="vertical-align: -4px">y</math>-axis is given by
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">S=\int 2\pi x\,ds,</math>&nbsp; where &nbsp;<math style="vertical-align: -19px">ds=\sqrt{1+\bigg(\frac{dx}{dy}\bigg)^2}dy.</math>
 
|-
 
|-
|'''2.''' The surface area &nbsp;<math style="vertical-align: 0px">S</math>&nbsp; of a function &nbsp;<math style="vertical-align: -5px">y=f(x)</math>&nbsp; rotated about the &nbsp;<math style="vertical-align: -4px">y</math>-axis is given by
+
|'''2.''' The formula for the length &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; of a curve &nbsp;<math style="vertical-align: -5px">y=f(x)</math>&nbsp; where &nbsp;<math style="vertical-align: -3px">a\leq x \leq b</math>&nbsp; is  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">S=\int 2\pi x\,ds,</math>&nbsp; where <math style="vertical-align: -18px">ds=\sqrt{1+\bigg(\frac{dx}{dy}\bigg)^2}dy.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.</math>  
 
|}
 
|}
  
Line 33: Line 33:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We start by calculating &nbsp;<math>\frac{dx}{dy}.</math>  
+
|We start by calculating &nbsp;<math style="vertical-align: -16px">\frac{dx}{dy}.</math>  
 
|-
 
|-
|Since &nbsp;<math style="vertical-align: -13px">x=y^3,~ \frac{dx}{dy}=3y^2.</math>
+
|Since &nbsp;<math style="vertical-align: -17px">x=y^3,~ \frac{dx}{dy}=3y^2.</math>
 
|-
 
|-
|Now, we are going to integrate with respect to <math>y.</math>
+
|Now, we are going to integrate with respect to &nbsp;<math style="vertical-align: -3px">y.</math>
 
|-
 
|-
 
|Using the formula given in the Foundations section,
 
|Using the formula given in the Foundations section,
Line 47: Line 47:
 
&&\\
 
&&\\
 
& = & \displaystyle{2\pi \int_0^1 y^3 \sqrt{1+9y^4}~dy.}
 
& = & \displaystyle{2\pi \int_0^1 y^3 \sqrt{1+9y^4}~dy.}
 +
\end{array}</math>
 
|-
 
|-
|where &nbsp;<math>S</math>&nbsp; is the surface area.  
+
|where &nbsp;<math style="vertical-align: 0px">S</math>&nbsp; is the surface area.  
\end{array}</math>
 
 
|}
 
|}
  
Line 55: Line 55:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we use <math>u</math>-substitution.  
+
|Now, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let <math>u=1+9y^4.</math>
+
|Let &nbsp;<math style="vertical-align: -5px">u=1+9y^4.</math>
 
|-
 
|-
|Then, <math>du=36y^3dy</math> and <math>\frac{du}{36}=y^3dy.</math>
+
|Then, &nbsp;<math style="vertical-align: -5px">du=36y^3dy</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{36}=y^3dy.</math>
 
|-
 
|-
 
|Also, since this is a definite integral, we need to change the bounds of integration.
 
|Also, since this is a definite integral, we need to change the bounds of integration.
Line 65: Line 65:
 
|We have
 
|We have
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>u_1=1+9(0)^4=1</math> and <math>u_2=1+9(1)^4=10.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>u_1=1+9(0)^4=1</math>&nbsp; and &nbsp;<math>u_2=1+9(1)^4=10.</math>
 
|-
 
|-
 
|Thus, we get
 
|Thus, we get
Line 83: Line 83:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we calculate &nbsp;<math>\frac{dy}{dx}.</math>
+
|First, we calculate &nbsp;<math style="vertical-align: -15px">\frac{dy}{dx}.</math>
 
|-
 
|-
|Since <math>y=1+9x^{\frac{3}{2}},</math> we have
+
|Since &nbsp;<math style="vertical-align: -5px">y=1+9x^{\frac{3}{2}},</math>&nbsp; we have
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{27\sqrt{x}}{2}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{27\sqrt{x}}{2}.</math>
 
|-
 
|-
|Then, the arc length &nbsp;<math>L</math>&nbsp; of the curve is given by  
+
|Then, the arc length &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; of the curve is given by  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_1^4 \sqrt{1+\bigg(\frac{27\sqrt{x}}{2}\bigg)^2}~dx.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_1^4 \sqrt{1+\bigg(\frac{27\sqrt{x}}{2}\bigg)^2}~dx.</math>
Line 101: Line 101:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_1^4 \sqrt{1+\frac{27^2x}{2^2}}~dx.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_1^4 \sqrt{1+\frac{27^2x}{2^2}}~dx.</math>
 
|-
 
|-
|Now, we use &nbsp;<math>u</math>-substitution.  
+
|Now, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let &nbsp;<math>u=1+\frac{27^2x}{2^2}.</math>
+
|Let &nbsp;<math style="vertical-align: -14px">u=1+\frac{27^2x}{2^2}.</math>
 
|-
 
|-
|Then, &nbsp; <math>du=\frac{27^2}{2^2}dx</math>&nbsp; and &nbsp;<math>dx=\frac{2^2}{27^2}du.</math>
+
|Then, &nbsp;<math style="vertical-align: -14px">du=\frac{27^2}{2^2}dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">dx=\frac{2^2}{27^2}du.</math>
 
|-
 
|-
 
|Also, since this is a definite integral, we need to change the bounds of integration.
 
|Also, since this is a definite integral, we need to change the bounds of integration.
 
|-
 
|-
|We have &nbsp; <math>u_1=1+\frac{27^2(1)}{2^2}=1+\frac{27^2}{2^2}</math>
+
|We have  
 
|-
 
|-
|and &nbsp; <math>u_2=1+\frac{27^2(4)}{2^2}=1+27^2.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>u_1=1+\frac{27^2(1)}{2^2}=1+\frac{27^2}{2^2}</math> and &nbsp;<math>u_2=1+\frac{27^2(4)}{2^2}=1+27^2.</math>
 
|-
 
|-
 
|Hence, we now have
 
|Hence, we now have
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_{1+\frac{27^2}{2^2}}^{1+27^2} \frac{2^2}{27^2}u^{\frac{1}{2}}~du.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_{1+\frac{27^2}{2^2}}^{1+27^2} \frac{2^2}{27^2}u^{\frac{1}{2}}~du.</math>
|-
 
|
 
 
|}
 
|}
  

Revision as of 17:25, 4 March 2017

(a) Find the area of the surface obtained by rotating the arc of the curve

between and about the -axis.

(b) Find the length of the arc

between the points and

Foundations:  
1. The surface area    of a function    rotated about the  -axis is given by

         where  

2. The formula for the length    of a curve    where    is

       


Solution:

(a)

Step 1:  
We start by calculating  
Since  
Now, we are going to integrate with respect to  
Using the formula given in the Foundations section,
we have
       
where    is the surface area.
Step 2:  
Now, we use  -substitution.
Let  
Then,    and  
Also, since this is a definite integral, we need to change the bounds of integration.
We have
         and  
Thus, we get
       

(b)

Step 1:  
First, we calculate  
Since    we have
       
Then, the arc length    of the curve is given by
       
Step 2:  
Then, we have
       
Now, we use  -substitution.
Let  
Then,    and  
Also, since this is a definite integral, we need to change the bounds of integration.
We have
        and  
Hence, we now have
       
Step 3:  
Therefore, we have
       


Final Answer:  
   (a)   
   (b)   

Return to Sample Exam