Difference between revisions of "009B Sample Final 2, Problem 5"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
Kayla Murray (talk | contribs)  | 
				Kayla Murray (talk | contribs)   | 
				||
| Line 14: | Line 14: | ||
!Foundations:      | !Foundations:      | ||
|-  | |-  | ||
| − | |'''1.''' The   | + | |'''1.''' The surface area  <math style="vertical-align: 0px">S</math>  of a function  <math style="vertical-align: -5px">y=f(x)</math>  rotated about the  <math style="vertical-align: -4px">y</math>-axis is given by   | 
|-  | |-  | ||
|  | |  | ||
| − |        <math>  | + |        <math style="vertical-align: -13px">S=\int 2\pi x\,ds,</math>  where  <math style="vertical-align: -19px">ds=\sqrt{1+\bigg(\frac{dx}{dy}\bigg)^2}dy.</math>  | 
|-  | |-  | ||
| − | |'''2.''' The   | + | |'''2.''' The formula for the length  <math style="vertical-align: 0px">L</math>  of a curve  <math style="vertical-align: -5px">y=f(x)</math>  where  <math style="vertical-align: -3px">a\leq x \leq b</math>  is    | 
|-  | |-  | ||
|  | |  | ||
| − |        <math   | + |        <math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx.</math>    | 
|}  | |}  | ||
| Line 33: | Line 33: | ||
!Step 1:      | !Step 1:      | ||
|-  | |-  | ||
| − | |We start by calculating  <math>\frac{dx}{dy}.</math>    | + | |We start by calculating  <math style="vertical-align: -16px">\frac{dx}{dy}.</math>    | 
|-  | |-  | ||
| − | |Since  <math style="vertical-align: -  | + | |Since  <math style="vertical-align: -17px">x=y^3,~ \frac{dx}{dy}=3y^2.</math>  | 
|-  | |-  | ||
| − | |Now, we are going to integrate with respect to <math>y.</math>  | + | |Now, we are going to integrate with respect to  <math style="vertical-align: -3px">y.</math>  | 
|-  | |-  | ||
|Using the formula given in the Foundations section,  | |Using the formula given in the Foundations section,  | ||
| Line 47: | Line 47: | ||
&&\\  | &&\\  | ||
& = & \displaystyle{2\pi \int_0^1 y^3 \sqrt{1+9y^4}~dy.}  | & = & \displaystyle{2\pi \int_0^1 y^3 \sqrt{1+9y^4}~dy.}  | ||
| + | \end{array}</math>  | ||
|-  | |-  | ||
| − | |where  <math>S</math>  is the surface area.    | + | |where  <math style="vertical-align: 0px">S</math>  is the surface area.    | 
| − | |||
|}  | |}  | ||
| Line 55: | Line 55: | ||
!Step 2:    | !Step 2:    | ||
|-  | |-  | ||
| − | |Now, we use <math>u</math>-substitution.    | + | |Now, we use  <math style="vertical-align: 0px">u</math>-substitution.    | 
|-  | |-  | ||
| − | |Let <math>u=1+9y^4.</math>  | + | |Let  <math style="vertical-align: -5px">u=1+9y^4.</math>  | 
|-  | |-  | ||
| − | |Then, <math>du=36y^3dy</math> and <math>\frac{du}{36}=y^3dy.</math>  | + | |Then,  <math style="vertical-align: -5px">du=36y^3dy</math>  and  <math style="vertical-align: -14px">\frac{du}{36}=y^3dy.</math>  | 
|-  | |-  | ||
|Also, since this is a definite integral, we need to change the bounds of integration.  | |Also, since this is a definite integral, we need to change the bounds of integration.  | ||
| Line 65: | Line 65: | ||
|We have  | |We have  | ||
|-  | |-  | ||
| − | |       <math>u_1=1+9(0)^4=1</math> and <math>u_2=1+9(1)^4=10.</math>  | + | |       <math>u_1=1+9(0)^4=1</math>  and  <math>u_2=1+9(1)^4=10.</math>  | 
|-  | |-  | ||
|Thus, we get  | |Thus, we get  | ||
| Line 83: | Line 83: | ||
!Step 1:      | !Step 1:      | ||
|-  | |-  | ||
| − | |First, we calculate  <math>\frac{dy}{dx}.</math>  | + | |First, we calculate  <math style="vertical-align: -15px">\frac{dy}{dx}.</math>  | 
|-  | |-  | ||
| − | |Since <math>y=1+9x^{\frac{3}{2}},</math> we have  | + | |Since  <math style="vertical-align: -5px">y=1+9x^{\frac{3}{2}},</math>  we have  | 
|-  | |-  | ||
|       <math>\frac{dy}{dx}=\frac{27\sqrt{x}}{2}.</math>  | |       <math>\frac{dy}{dx}=\frac{27\sqrt{x}}{2}.</math>  | ||
|-  | |-  | ||
| − | |Then, the arc length  <math>L</math>  of the curve is given by    | + | |Then, the arc length  <math style="vertical-align: 0px">L</math>  of the curve is given by    | 
|-  | |-  | ||
|       <math>L=\int_1^4 \sqrt{1+\bigg(\frac{27\sqrt{x}}{2}\bigg)^2}~dx.</math>  | |       <math>L=\int_1^4 \sqrt{1+\bigg(\frac{27\sqrt{x}}{2}\bigg)^2}~dx.</math>  | ||
| Line 101: | Line 101: | ||
|       <math>L=\int_1^4 \sqrt{1+\frac{27^2x}{2^2}}~dx.</math>  | |       <math>L=\int_1^4 \sqrt{1+\frac{27^2x}{2^2}}~dx.</math>  | ||
|-  | |-  | ||
| − | |Now, we use  <math>u</math>-substitution.    | + | |Now, we use  <math style="vertical-align: 0px">u</math>-substitution.    | 
|-  | |-  | ||
| − | |Let  <math>u=1+\frac{27^2x}{2^2}.</math>  | + | |Let  <math style="vertical-align: -14px">u=1+\frac{27^2x}{2^2}.</math>  | 
|-  | |-  | ||
| − | |Then,   <math>du=\frac{27^2}{2^2}dx</math>  and  <math>dx=\frac{2^2}{27^2}du.</math>  | + | |Then,  <math style="vertical-align: -14px">du=\frac{27^2}{2^2}dx</math>  and  <math style="vertical-align: -14px">dx=\frac{2^2}{27^2}du.</math>  | 
|-  | |-  | ||
|Also, since this is a definite integral, we need to change the bounds of integration.  | |Also, since this is a definite integral, we need to change the bounds of integration.  | ||
|-  | |-  | ||
| − | |We have   | + | |We have    | 
|-  | |-  | ||
| − | |and   <math>u_2=1+\frac{27^2(4)}{2^2}=1+27^2.</math>  | + | |       <math>u_1=1+\frac{27^2(1)}{2^2}=1+\frac{27^2}{2^2}</math> and  <math>u_2=1+\frac{27^2(4)}{2^2}=1+27^2.</math>  | 
|-  | |-  | ||
|Hence, we now have  | |Hence, we now have  | ||
|-  | |-  | ||
|       <math>L=\int_{1+\frac{27^2}{2^2}}^{1+27^2} \frac{2^2}{27^2}u^{\frac{1}{2}}~du.</math>  | |       <math>L=\int_{1+\frac{27^2}{2^2}}^{1+27^2} \frac{2^2}{27^2}u^{\frac{1}{2}}~du.</math>  | ||
| − | |||
| − | |||
|}  | |}  | ||
Revision as of 16:25, 4 March 2017
(a) Find the area of the surface obtained by rotating the arc of the curve
between and about the -axis.
(b) Find the length of the arc
between the points and
| Foundations: | 
|---|
| 1. The surface area of a function rotated about the -axis is given by | 
| 
 where  | 
| 2. The formula for the length of a curve where is | 
| 
 
  | 
Solution:
(a)
| Step 1: | 
|---|
| We start by calculating | 
| Since | 
| Now, we are going to integrate with respect to | 
| Using the formula given in the Foundations section, | 
| we have | 
| where is the surface area. | 
| Step 2: | 
|---|
| Now, we use -substitution. | 
| Let | 
| Then, and | 
| Also, since this is a definite integral, we need to change the bounds of integration. | 
| We have | 
| and | 
| Thus, we get | 
(b)
| Step 1: | 
|---|
| First, we calculate | 
| Since we have | 
| Then, the arc length of the curve is given by | 
| Step 2: | 
|---|
| Then, we have | 
| Now, we use -substitution. | 
| Let | 
| Then, and | 
| Also, since this is a definite integral, we need to change the bounds of integration. | 
| We have | 
| and | 
| Hence, we now have | 
| Step 3: | 
|---|
| Therefore, we have | 
| Final Answer: | 
|---|
| (a) | 
| (b) |