Difference between revisions of "009B Sample Final 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 22: Line 22:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">S=\int 2\pi x\,ds,</math>&nbsp; where <math style="vertical-align: -18px">ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">S=\int 2\pi x\,ds,</math>&nbsp; where <math style="vertical-align: -18px">ds=\sqrt{1+\bigg(\frac{dx}{dy}\bigg)^2}dy.</math>
 
|}
 
|}
  
Line 33: Line 33:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|We start by calculating &nbsp;<math>\frac{dx}{dy}.</math>
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -13px">x=y^3,~ \frac{dx}{dy}=3y^2.</math>
 +
|-
 +
|Now, we are going to integrate with respect to <math>y.</math>
 +
|-
 +
|Using the formula given in the Foundations section,
 
|-
 
|-
|
+
|we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{S} & = & \displaystyle{\int_0^1 2\pi x \sqrt{1+(3y^2)^2}~dy}\\
 +
&&\\
 +
& = & \displaystyle{2\pi \int_0^1 y^3 \sqrt{1+9y^4}~dy.}
 
|-
 
|-
|
+
|where &nbsp;<math>S</math>&nbsp; is the surface area.
 +
\end{array}</math>
 
|}
 
|}
  
Line 45: Line 55:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we use <math>u</math>-substitution.
 +
|-
 +
|Let <math>u=1+9y^4.</math>
 +
|-
 +
|Then, <math>du=36y^3dy</math> and <math>\frac{du}{36}=y^3dy.</math>
 +
|-
 +
|Also, since this is a definite integral, we need to change the bounds of integration.
 +
|-
 +
|We have
 
|-
 
|-
|  
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>u_1=1+9(0)^4=1</math> and <math>u_2=1+9(1)^4=10.</math>
 
|-
 
|-
|
+
|Thus, we get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{S} & = & \displaystyle{\frac{2\pi}{36} \int_1^{10} \sqrt{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\pi}{27} u^{\frac{3}{2}}\bigg|_1^{10}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\pi}{27} (10)^{\frac{3}{2}}-\frac{\pi}{27}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 114: Line 138:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>\frac{\pi}{27} (10)^{\frac{3}{2}}-\frac{\pi}{27}</math>
 
|-
 
|-
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{2^3}{3^4} (1+27^2)^{\frac{3}{2}}-\frac{2^3}{3^4} \bigg(1+\frac{27^2}{2^2}\bigg)^{\frac{3}{2}}</math>
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{2^3}{3^4} (1+27^2)^{\frac{3}{2}}-\frac{2^3}{3^4} \bigg(1+\frac{27^2}{2^2}\bigg)^{\frac{3}{2}}</math>
 
|}
 
|}
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:11, 4 March 2017

(a) Find the area of the surface obtained by rotating the arc of the curve

between and about the -axis.

(b) Find the length of the arc

between the points and

Foundations:  
1. The formula for the length    of a curve    where    is

       

2. The surface area    of a function    rotated about the  -axis is given by

         where


Solution:

(a)

Step 1:  
We start by calculating  
Since  
Now, we are going to integrate with respect to
Using the formula given in the Foundations section,
we have
        Failed to parse (unknown function "\begin{array}"): {\displaystyle \begin{array}{rcl} \displaystyle{S} & = & \displaystyle{\int_0^1 2\pi x \sqrt{1+(3y^2)^2}~dy}\\ &&\\ & = & \displaystyle{2\pi \int_0^1 y^3 \sqrt{1+9y^4}~dy.} |- |where &nbsp;<math>S}   is the surface area.

\end{array}</math>

Step 2:  
Now, we use -substitution.
Let
Then, and
Also, since this is a definite integral, we need to change the bounds of integration.
We have
        and
Thus, we get
       

(b)

Step 1:  
First, we calculate  
Since we have
       
Then, the arc length    of the curve is given by
       
Step 2:  
Then, we have
       
Now, we use  -substitution.
Let  
Then,     and  
Also, since this is a definite integral, we need to change the bounds of integration.
We have  
and  
Hence, we now have
       
Step 3:  
Therefore, we have
       


Final Answer:  
   (a)   
   (b)   

Return to Sample Exam