Difference between revisions of "009B Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 60: Line 60:
 
|The Fundamental Theorem of Calculus Part 2 says that  
 
|The Fundamental Theorem of Calculus Part 2 says that  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\int_0^1 \frac{d}{dx}(e^{\arctan(x)})~dx=F(1)-F(0)</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\int_0^1 \frac{d}{dx}\bigg(e^{\arctan(x)}\bigg)~dx=F(1)-F(0)</math>
 
|-
 
|-
|where &nbsp;<math>F(x)</math>&nbsp; is any antiderivative of &nbsp;<math>\frac{d}{dx}(e^{\arctan(x)}).</math>
+
|where &nbsp;<math style="vertical-align: -5px">F(x)</math>&nbsp; is any antiderivative of &nbsp;<math style="vertical-align: -15px">\frac{d}{dx}\bigg(e^{\arctan(x)}\bigg).</math>
 
|-
 
|-
 
|Thus, we can take  
 
|Thus, we can take  
Line 68: Line 68:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>F(x)=e^{\arctan(x)}</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>F(x)=e^{\arctan(x)}</math>  
 
|-
 
|-
|since then <math>F'(x)=\frac{d}{dx}(e^{\arctan(x)}).</math>
+
|since then <math style="vertical-align: -15px">F'(x)=\frac{d}{dx}\bigg(e^{\arctan(x)}\bigg).</math>
 
|}
 
|}
  
Line 77: Line 77:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\int_0^1 \frac{d}{dx}(e^{\arctan(x)})~dx} & = & \displaystyle{F(1)-F(0)}\\
+
\displaystyle{\int_0^1 \frac{d}{dx}\bigg(e^{\arctan(x)}\bigg)~dx} & = & \displaystyle{F(1)-F(0)}\\
 
&&\\
 
&&\\
& = & \displaystyle{e^{\arctan(1}-e^{\arctan(0)}}\\
+
& = & \displaystyle{e^{\arctan(1)}-e^{\arctan(0)}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{e^{\frac{\pi}{4}}-e^0}\\
 
& = & \displaystyle{e^{\frac{\pi}{4}}-e^0}\\

Revision as of 15:41, 4 March 2017

(a) State both parts of the Fundamental Theorem of Calculus.

(b) Evaluate the integral

(c) Compute

Foundations:  
1. What does Part 2 of the Fundamental Theorem of Calculus say about    where    are constants?

        Part 2 of the Fundamental Theorem of Calculus says that

          where    is any antiderivative of  
2. What does Part 1 of the Fundamental Theorem of Calculus say about  

        Part 1 of the Fundamental Theorem of Calculus says that

       

Solution:

(a)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
       Let    be continuous on    and let  
       Then,    is a differentiable function on    and  
Step 2:  
The Fundamental Theorem of Calculus, Part 2
       Let    be continuous on    and let    be any antiderivative of  
       Then,  

(b)

Step 1:  
The Fundamental Theorem of Calculus Part 2 says that
       
where    is any antiderivative of  
Thus, we can take
       
since then
Step 2:  
Now, we have
       

(c)

Step 1:  
Using the Fundamental Theorem of Calculus Part 1 and the Chain Rule, we have
       
Step 2:  
Hence, we have
       
Final Answer:  
   (a)    See above
   (b)   
   (c)   

Return to Sample Exam