Difference between revisions of "009B Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|'''1.''' What does Part 2 of the Fundamental Theorem of Calculus say about &nbsp;<math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">a,b</math>&nbsp; are constants?
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; Part 2 of the Fundamental Theorem of Calculus says that
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">F</math>&nbsp; is any antiderivative of &nbsp;<math style="vertical-align: 0px">\sec^2x.</math>
 
|-
 
|-
|
+
|'''2.''' What does Part 1 of the Fundamental Theorem of Calculus say about &nbsp;<math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt?</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; Part 1 of the Fundamental Theorem of Calculus says that
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math>
 
|}
 
|}
  

Revision as of 15:37, 4 March 2017

(a) State both parts of the Fundamental Theorem of Calculus.

(b) Evaluate the integral

(c) Compute

Foundations:  
1. What does Part 2 of the Fundamental Theorem of Calculus say about    where    are constants?

        Part 2 of the Fundamental Theorem of Calculus says that

          where    is any antiderivative of  
2. What does Part 1 of the Fundamental Theorem of Calculus say about  

        Part 1 of the Fundamental Theorem of Calculus says that

       

Solution:

(a)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
       Let    be continuous on    and let  
       Then,    is a differentiable function on    and  
Step 2:  
The Fundamental Theorem of Calculus, Part 2
       Let    be continuous on    and let    be any antiderivative of  
       Then,  

(b)

Step 1:  
The Fundamental Theorem of Calculus Part 2 says that
       
where    is any antiderivative of  
Thus, we can take
       
since then
Step 2:  
Now, we have
       

(c)

Step 1:  
Using the Fundamental Theorem of Calculus Part 1 and the Chain Rule, we have
       
Step 2:  
Hence, we have
       
Final Answer:  
   (a)    See above
   (b)   
   (c)   

Return to Sample Exam