Difference between revisions of "009B Sample Final 2, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 12: | Line 12: | ||
|'''1.''' For <math>\int \frac{dx}{x^2\sqrt{x^2-16}},</math> what would be the correct trig substitution? | |'''1.''' For <math>\int \frac{dx}{x^2\sqrt{x^2-16}},</math> what would be the correct trig substitution? | ||
|- | |- | ||
− | | The correct substitution is <math>x=4\sec^2\theta.</math> | + | | The correct substitution is <math style="vertical-align: -1px">x=4\sec^2\theta.</math> |
|- | |- | ||
|'''2.''' We have the Pythagorean identity | |'''2.''' We have the Pythagorean identity | ||
Line 35: | Line 35: | ||
|We start by using trig substitution. | |We start by using trig substitution. | ||
|- | |- | ||
− | |Let <math>x=4\sec \theta.</math> | + | |Let <math style="vertical-align: -1px">x=4\sec \theta.</math> |
|- | |- | ||
− | |Then, <math>dx=4\sec \theta \tan \theta ~d\theta.</math> | + | |Then, <math style="vertical-align: -2px">dx=4\sec \theta \tan \theta ~d\theta.</math> |
|- | |- | ||
|So, the integral becomes | |So, the integral becomes | ||
Line 81: | Line 81: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we use <math>u</math>-substitution. | + | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
− | |Let <math>u=\sin x.</math> Then, <math>du=\cos x ~dx.</math> | + | |Let <math style="vertical-align: -1px">u=\sin x.</math> Then, <math style="vertical-align: -1px">du=\cos x ~dx.</math> |
|- | |- | ||
|Since this is a definite integral, we need to change the bounds of integration. | |Since this is a definite integral, we need to change the bounds of integration. | ||
Line 89: | Line 89: | ||
|Then, we have | |Then, we have | ||
|- | |- | ||
− | | <math>u_1=\sin(-\pi)=0</math> and <math>u_2=\sin(\pi)=0.</math> | + | | <math style="vertical-align: -5px">u_1=\sin(-\pi)=0</math> and <math style="vertical-align: -5px">u_2=\sin(\pi)=0.</math> |
|- | |- | ||
|So, we have | |So, we have | ||
Line 113: | Line 113: | ||
| <math>\frac{x-3}{(x+1)(x+5)}=\frac{A}{x+1}+\frac{B}{x+5}.</math> | | <math>\frac{x-3}{(x+1)(x+5)}=\frac{A}{x+1}+\frac{B}{x+5}.</math> | ||
|- | |- | ||
− | |If we multiply both sides of this equation by <math>(x+1)(x+5),</math> we get | + | |If we multiply both sides of this equation by <math style="vertical-align: -5px">(x+1)(x+5),</math> we get |
|- | |- | ||
| <math>x-3=A(x+5)+B(x+1).</math> | | <math>x-3=A(x+5)+B(x+1).</math> | ||
|- | |- | ||
− | |If we let <math>x=-1,</math> we get <math>A=-1.</math> | + | |If we let <math style="vertical-align: -4px">x=-1,</math> we get <math style="vertical-align: -1px">A=-1.</math> |
|- | |- | ||
− | |If we let <math>x=-5,</math> we get <math>B=2.</math> | + | |If we let <math style="vertical-align: -4px">x=-5,</math> we get <math style="vertical-align: -1px">B=2.</math> |
|- | |- | ||
|So, we have | |So, we have | ||
Line 140: | Line 140: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | |Now, we use <math>u</math>-substitution for both of these integrals. | + | |Now, we use <math style="vertical-align: 0px">u</math>-substitution for both of these integrals. |
|- | |- | ||
− | |Let <math>u=x+1.</math> Then, <math>du=dx.</math> | + | |Let <math style="vertical-align: -2px">u=x+1.</math> Then, <math style="vertical-align: -1px">du=dx.</math> |
|- | |- | ||
− | |Let <math>t=x+5.</math> Then, <math>dt=dx.</math> | + | |Let <math style="vertical-align: -3px">t=x+5.</math> Then, <math style="vertical-align: -1px">dt=dx.</math> |
|- | |- | ||
|Since these are definite integrals, we need to change the bounds of integration. | |Since these are definite integrals, we need to change the bounds of integration. | ||
|- | |- | ||
− | |We have <math>u_1=0+1=1</math> and <math>u_2=1+1=2.</math> | + | |We have <math style="vertical-align: -4px">u_1=0+1=1</math> and <math style="vertical-align: -4px">u_2=1+1=2.</math> |
|- | |- | ||
− | |Also, <math>t_1=0+5=5</math> and <math> | + | |Also, <math style="vertical-align: -4px">t_1=0+5=5</math> and <math style="vertical-align: -4px">t_2=1+5=6.</math> |
|- | |- | ||
|Therefore, we get | |Therefore, we get |
Revision as of 14:26, 4 March 2017
Evaluate the following integrals:
(a)
(b)
(c)
Foundations: |
---|
1. For what would be the correct trig substitution? |
The correct substitution is |
2. We have the Pythagorean identity |
3. Through partial fraction decomposition, we can write the fraction |
for some constants |
Solution:
(a)
Step 1: |
---|
We start by using trig substitution. |
Let |
Then, |
So, the integral becomes |
Step 2: |
---|
Now, we integrate to get |
(b)
Step 1: |
---|
First, we write |
Step 2: |
---|
Now, we use -substitution. |
Let Then, |
Since this is a definite integral, we need to change the bounds of integration. |
Then, we have |
and |
So, we have |
(c)
Step 1: |
---|
First, we write |
Now, we use partial fraction decomposition. Wet set |
If we multiply both sides of this equation by we get |
If we let we get |
If we let we get |
So, we have |
Step 2: |
---|
Now, we have |
|
Now, we use -substitution for both of these integrals. |
Let Then, |
Let Then, |
Since these are definite integrals, we need to change the bounds of integration. |
We have and |
Also, and |
Therefore, we get |
Final Answer: |
---|
(a) |
(b) |
(c) |