Difference between revisions of "009B Sample Final 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 37: Line 37:
 
|Let &nbsp;<math>x=4\sec \theta.</math>
 
|Let &nbsp;<math>x=4\sec \theta.</math>
 
|-
 
|-
|Then, &nbsp;<math>dx=4\sec \theta \tan \theta d\theta.</math>
+
|Then, &nbsp;<math>dx=4\sec \theta \tan \theta ~d\theta.</math>
 
|-
 
|-
 
|So, the integral becomes
 
|So, the integral becomes
Line 83: Line 83:
 
|Now, we use &nbsp;<math>u</math>-substitution.
 
|Now, we use &nbsp;<math>u</math>-substitution.
 
|-
 
|-
|Let &nbsp;<math>u=\sin x.</math>&nbsp; Then, &nbsp;<math>du=\cos x dx.</math>
+
|Let &nbsp;<math>u=\sin x.</math>&nbsp; Then, &nbsp;<math>du=\cos x ~dx.</math>
 
|-
 
|-
 
|Since this is a definite integral, we need to change the bounds of integration.
 
|Since this is a definite integral, we need to change the bounds of integration.
Line 113: Line 113:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{x-3}{(x+1)(x+5)}=\frac{A}{x+1}+\frac{B}{x+5}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{x-3}{(x+1)(x+5)}=\frac{A}{x+1}+\frac{B}{x+5}.</math>
 
|-
 
|-
|If we multiply both sides of this equation by &nbsp;<math>(x+1)(x+5),</math> we get
+
|If we multiply both sides of this equation by &nbsp;<math>(x+1)(x+5),</math>&nbsp; we get
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>x-3=A(x+5)+B(x+1).</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>x-3=A(x+5)+B(x+1).</math>
 
|-
 
|-
|If we  let &nbsp;<math>x=-1,</math> we get <math>A=-1.</math>
+
|If we  let &nbsp;<math>x=-1,</math>&nbsp; we get &nbsp;<math>A=-1.</math>
 
|-
 
|-
|If we  let &nbsp;<math>x=-5,</math> we get <math>B=2.</math>
+
|If we  let &nbsp;<math>x=-5,</math>&nbsp; we get &nbsp;<math>B=2.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have

Revision as of 13:16, 4 March 2017

Evaluate the following integrals:

(a)  

(b)  

(c)  

Foundations:  
1. For    what would be the correct trig substitution?
       The correct substitution is  
2. We have the Pythagorean identity
       
3. Through partial fraction decomposition, we can write the fraction
       
       for some constants


Solution:

(a)

Step 1:  
We start by using trig substitution.
Let  
Then,  
So, the integral becomes
       
Step 2:  
Now, we integrate to get
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we use  -substitution.
Let    Then,  
Since this is a definite integral, we need to change the bounds of integration.
Then, we have
   and  
So, we have
       

(c)

Step 1:  
First, we write
       
Now, we use partial fraction decomposition. Wet set
       
If we multiply both sides of this equation by    we get
       
If we let    we get  
If we let    we get  
So, we have
       
Step 2:  
Now, we have

       

Now, we use  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution for both of these integrals.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x+1.}   Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx.}
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=x+5.}   Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dt=dx.}
Since these are definite integrals, we need to change the bounds of integration.
We have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_1=0+1=1}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_2=1+1=2.}
Also,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_1=0+5=5}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_2=1+5=6.}
Therefore, we get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^1 \frac{x-3}{(x+1)(x+5)}~dx} & = & \displaystyle{\int_1^2 \frac{-1}{u}~du+\int_5^6 \frac{2}{t}~dt}\\ &&\\ & = & \displaystyle{-\ln|u|\bigg|_1^2+2\ln|t|\bigg|_5^6}\\ &&\\ & = & \displaystyle{-\ln(2)+2\ln(6)-2\ln(5).} \end{array}}


Final Answer:  
   (a)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{16}\bigg(\frac{\sqrt{x^2-16}}{x}\bigg)+C}
   (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0}
   (c)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\ln(2)+2\ln(6)-2\ln(5)}

Return to Sample Exam