Difference between revisions of "009B Sample Final 2, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 30: | Line 30: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |First, we write |
| + | |- | ||
| + | | <math>\int_1^\infty \frac{\ln x}{x^4}~dx=\lim_{a\rightarrow \infty} \int_1^a \frac{\ln x}{x^4}~dx.</math> | ||
| + | |- | ||
| + | |Now, we use integration by parts. | ||
| + | |- | ||
| + | |Let <math>u=\ln x</math> and <math>dv=\frac{1}{x^4}dx.</math> | ||
|- | |- | ||
| − | | | + | |Then, <math>du=\frac{1}{x}dx</math> and <math>v=\frac{1}{-3x^3}.</math> |
|- | |- | ||
| − | | | + | |Using integration by parts, we get |
|- | |- | ||
| − | | | + | | <math>\begin{array}{rcl} |
| + | \displaystyle{\int_1^\infty \frac{\ln x}{x^4}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln x}{-3x^3}\bigg|_1^a+\int_1^a \frac{1}{3x^4}~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln x}{-3x^3}-\frac{1}{9x^3}\bigg|_1^a.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 42: | Line 52: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, using L'Hopital's Rule, we get |
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
| − | | | + | | <math>\begin{array}{rcl} |
| + | \displaystyle{\int_1^\infty \frac{\ln x}{x^4}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln a}{-3a^3}-\frac{1}{9a^3}-\bigg(\frac{\ln 1}{-3}-\frac{1}{9}\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln(a)}{-3a^3}+0+0+\frac{1}{9}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln(x)}{-3x^3}+\frac{1}{9}}\\ | ||
| + | &&\\ | ||
| + | & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x}}{-9x^2}+\frac{1}{9}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{1}{9}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 73: | Line 89: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' | + | | '''(a)''' <math>\frac{1}{9}</math> |
|- | |- | ||
|'''(b)''' | |'''(b)''' | ||
|} | |} | ||
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 13:08, 3 March 2017
Evaluate the following integrals or show that they are divergent:
(a)
(b)
| Foundations: |
|---|
| 1. How could you write so that you can integrate? |
|
You can write |
| 2. How could you write |
|
The problem is that is not continuous at |
|
So, you can write |
Solution:
(a)
| Step 1: |
|---|
| First, we write |
| Now, we use integration by parts. |
| Let and |
| Then, and |
| Using integration by parts, we get |
| Step 2: |
|---|
| Now, using L'Hopital's Rule, we get |
(b)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |