Difference between revisions of "009B Sample Final 2, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 30: Line 30:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we write
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_1^\infty \frac{\ln x}{x^4}~dx=\lim_{a\rightarrow \infty} \int_1^a \frac{\ln x}{x^4}~dx.</math>
 +
|-
 +
|Now, we use integration by parts.
 +
|-
 +
|Let <math>u=\ln x</math> and <math>dv=\frac{1}{x^4}dx.</math>
 
|-
 
|-
|
+
|Then, <math>du=\frac{1}{x}dx</math> and <math>v=\frac{1}{-3x^3}.</math>
 
|-
 
|-
|
+
|Using integration by parts, we get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int_1^\infty \frac{\ln x}{x^4}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln x}{-3x^3}\bigg|_1^a+\int_1^a \frac{1}{3x^4}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln x}{-3x^3}-\frac{1}{9x^3}\bigg|_1^a.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 42: Line 52:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, using L'Hopital's Rule, we get
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int_1^\infty \frac{\ln x}{x^4}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln a}{-3a^3}-\frac{1}{9a^3}-\bigg(\frac{\ln 1}{-3}-\frac{1}{9}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln(a)}{-3a^3}+0+0+\frac{1}{9}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln(x)}{-3x^3}+\frac{1}{9}}\\
 +
&&\\
 +
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x}}{-9x^2}+\frac{1}{9}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{9}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 73: Line 89:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>\frac{1}{9}</math>
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  
 
|}
 
|}
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:08, 3 March 2017

Evaluate the following integrals or show that they are divergent:

(a)  

(b)  

Foundations:  
1. How could you write   so that you can integrate?

        You can write  

2. How could you write  

        The problem is that    is not continuous at  

        So, you can write  


Solution:

(a)

Step 1:  
First, we write
       
Now, we use integration by parts.
Let and
Then, and
Using integration by parts, we get
       
Step 2:  
Now, using L'Hopital's Rule, we get
       

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)   
(b)

Return to Sample Exam