Difference between revisions of "009B Sample Final 2, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 30: | Line 30: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |First, we write |
+ | |- | ||
+ | | <math>\int_1^\infty \frac{\ln x}{x^4}~dx=\lim_{a\rightarrow \infty} \int_1^a \frac{\ln x}{x^4}~dx.</math> | ||
+ | |- | ||
+ | |Now, we use integration by parts. | ||
+ | |- | ||
+ | |Let <math>u=\ln x</math> and <math>dv=\frac{1}{x^4}dx.</math> | ||
|- | |- | ||
− | | | + | |Then, <math>du=\frac{1}{x}dx</math> and <math>v=\frac{1}{-3x^3}.</math> |
|- | |- | ||
− | | | + | |Using integration by parts, we get |
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{\int_1^\infty \frac{\ln x}{x^4}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln x}{-3x^3}\bigg|_1^a+\int_1^a \frac{1}{3x^4}~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln x}{-3x^3}-\frac{1}{9x^3}\bigg|_1^a.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 42: | Line 52: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, using L'Hopital's Rule, we get |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{\int_1^\infty \frac{\ln x}{x^4}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln a}{-3a^3}-\frac{1}{9a^3}-\bigg(\frac{\ln 1}{-3}-\frac{1}{9}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln(a)}{-3a^3}+0+0+\frac{1}{9}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln(x)}{-3x^3}+\frac{1}{9}}\\ | ||
+ | &&\\ | ||
+ | & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x}}{-9x^2}+\frac{1}{9}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{9}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 73: | Line 89: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' <math>\frac{1}{9}</math> |
|- | |- | ||
|'''(b)''' | |'''(b)''' | ||
|} | |} | ||
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 14:08, 3 March 2017
Evaluate the following integrals or show that they are divergent:
(a)
(b)
Foundations: |
---|
1. How could you write so that you can integrate? |
You can write |
2. How could you write |
The problem is that is not continuous at |
So, you can write |
Solution:
(a)
Step 1: |
---|
First, we write |
Now, we use integration by parts. |
Let and |
Then, and |
Using integration by parts, we get |
Step 2: |
---|
Now, using L'Hopital's Rule, we get |
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |