Difference between revisions of "009B Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 28: Line 28:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|The Fundamental Theorem of Calculus has two parts.
 
|-
 
|-
|
+
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;Let &nbsp;<math>f</math>&nbsp; be continuous on &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; and let &nbsp;<math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math>
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;Then, &nbsp;<math style="vertical-align: 0px">F</math>&nbsp; is a differentiable function on &nbsp;<math style="vertical-align: -5px">(a,b)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">F'(x)=f(x).</math>
 
|}
 
|}
  
Line 40: Line 40:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|'''The Fundamental Theorem of Calculus, Part 2'''
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;Let &nbsp;<math>f</math>&nbsp; be continuous on &nbsp;<math>[a,b]</math>&nbsp; and let &nbsp;<math style="vertical-align: 0px">F</math>&nbsp; be any antiderivative of &nbsp;<math>f.</math>
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;Then, &nbsp;<math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|}
 
|}
  
Line 88: Line 86:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; See above
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  

Revision as of 13:53, 3 March 2017

(a) State both parts of the Fundamental Theorem of Calculus.

(b) Evaluate the integral

(c) Compute

Foundations:  

Solution:

(a)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
       Let    be continuous on    and let  
       Then,    is a differentiable function on    and  
Step 2:  
The Fundamental Theorem of Calculus, Part 2
       Let    be continuous on    and let    be any antiderivative of  
       Then,  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  
Final Answer:  
   (a)    See above
(b)
(c)

Return to Sample Exam