Difference between revisions of "009B Sample Final 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 27: Line 27:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|To graph &nbsp;<math>\rho(x),</math>&nbsp; we need to find out when &nbsp;<math>-x^2+6x+16</math>&nbsp; is negative.
+
|To graph &nbsp;<math style="vertical-align: -5px">\rho(x),</math>&nbsp; we need to find out when &nbsp;<math style="vertical-align: -2px">-x^2+6x+16</math>&nbsp; is negative.
 
|-
 
|-
 
|To do this, we set  
 
|To do this, we set  
Line 43: Line 43:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Hence, we get &nbsp;<math>x=-2</math>&nbsp; and &nbsp;<math>x=8.</math>&nbsp;
+
|Hence, we get &nbsp;<math style="vertical-align: 0px">x=-2</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">x=8.</math>&nbsp;
 
|-
 
|-
|But, &nbsp;<math>x=-2</math>&nbsp; is outside of the domain of &nbsp;<math>\rho(x).</math>
+
|But, &nbsp;<math style="vertical-align: 0px">x=-2</math>&nbsp; is outside of the domain of &nbsp;<math style="vertical-align: -5px">\rho(x).</math>
 
|-
 
|-
|Using test points, we can see that &nbsp;<math>-x^2+6x+16</math>&nbsp; is positive in the interval &nbsp;<math>[0,8]</math>  
+
|Using test points, we can see that &nbsp;<math style="vertical-align: -2px">-x^2+6x+16</math>&nbsp; is positive in the interval &nbsp;<math style="vertical-align: -5px">[0,8]</math>  
 
|-
 
|-
|and negative in the interval &nbsp;<math>[8,12].</math>
+
|and negative in the interval &nbsp;<math style="vertical-align: -5px">[8,12].</math>
 
|-
 
|-
 
|Hence, we have
 
|Hence, we have
Line 61: Line 61:
 
</math>
 
</math>
 
|-
 
|-
|The graph of &nbsp;<math>\rho(x)</math>&nbsp; is displayed below.
+
|The graph of &nbsp;<math style="vertical-align: -5px">\rho(x)</math>&nbsp; is displayed below.
 
|}
 
|}
  
Line 67: Line 67:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|We need to find the absolute maximum and minimum of &nbsp;<math>\rho(x).</math>
+
|We need to find the absolute maximum and minimum of &nbsp;<math style="vertical-align: -5px">\rho(x).</math>
 
|-
 
|-
|We begin by finding the critical points of &nbsp;<math>-x^2+6x+16.</math>
+
|We begin by finding the critical points of &nbsp;<math style="vertical-align: -2px">-x^2+6x+16.</math>
 
|-
 
|-
|Taking the derivative, we have &nbsp;<math>-2x+6.</math>
+
|Taking the derivative, we have &nbsp;<math style="vertical-align: -2px">-2x+6.</math>
 
|-
 
|-
|Solving &nbsp;<math>-2x+6=0,</math>&nbsp; we get a critical point at &nbsp;<math>x=3</math>.
+
|Solving &nbsp;<math style="vertical-align: -4px">-2x+6=0,</math>&nbsp; we get a critical point at &nbsp;<math style="vertical-align: 0px">x=3.</math>
 
|-
 
|-
|Now, we calculate &nbsp;<math>\rho(0),\rho(3),\rho(12).</math>
+
|Now, we calculate &nbsp;<math style="vertical-align: -5px">\rho(0),\rho(3),\rho(12).</math>
 
|-
 
|-
 
|We have
 
|We have
Line 81: Line 81:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\rho(0)=16,\rho(3)=25,\rho(12)=56.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\rho(0)=16,\rho(3)=25,\rho(12)=56.</math>
 
|-
 
|-
|Therefore, the minimum of &nbsp;<math>\rho(x)</math>&nbsp; is &nbsp;<math>16</math>&nbsp; and the maximum of &nbsp;<math>\rho(x)</math>&nbsp; is &nbsp;<math>56.</math>
+
|Therefore, the minimum of &nbsp;<math style="vertical-align: -5px">\rho(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">16</math>&nbsp; and the maximum of &nbsp;<math style="vertical-align: -5px">\rho(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">56.</math>
 
|}
 
|}
  
Line 120: Line 120:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The minimum of &nbsp;<math>\rho(x)</math>&nbsp; is &nbsp;<math>16</math>&nbsp; and the maximum of &nbsp;<math>\rho(x)</math>&nbsp; is &nbsp;<math>56.</math>&nbsp; (See Step 1 for graph)
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The minimum of &nbsp;<math style="vertical-align: -5px">\rho(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">16</math>&nbsp; and the maximum of &nbsp;<math style="vertical-align: -5px">\rho(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">56.</math>
 
|-
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; There are approximately &nbsp;<math>251</math>&nbsp; trout.
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; There are approximately &nbsp;<math>251</math>&nbsp; trout.

Revision as of 13:35, 3 March 2017

The population density of trout in a stream is

where    is measured in trout per mile and    is measured in miles.    runs from 0 to 12.

(a) Graph    and find the minimum and maximum.

(b) Find the total number of trout in the stream.

Foundations:  
What is the relationship between population density    and the total populations?
       The total population is equal to  
       for appropriate choices of  


Solution:

(a)

Step 1:  
To graph    we need to find out when    is negative.
To do this, we set
       
So, we have
       
Hence, we get    and   
But,    is outside of the domain of  
Using test points, we can see that    is positive in the interval  
and negative in the interval  
Hence, we have
       
The graph of    is displayed below.
Step 2:  
We need to find the absolute maximum and minimum of  
We begin by finding the critical points of  
Taking the derivative, we have  
Solving    we get a critical point at  
Now, we calculate  
We have
       
Therefore, the minimum of    is    and the maximum of    is  

(b)

Step 1:  
To calculate the total number of trout, we need to find
       
Using the information from Step 1 of (a), we have
       
Step 2:  
We integrate to get
       
Thus, there are approximately    trout.


Final Answer:  
    (a)     The minimum of    is    and the maximum of    is  
    (b)     There are approximately    trout.

Return to Sample Exam