Difference between revisions of "009B Sample Final 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|'''1.''' You can find the intersection points of two functions, say &nbsp; <math style="vertical-align: -5px">f(x),g(x),</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; by setting &nbsp;<math style="vertical-align: -5px">f(x)=g(x)</math>&nbsp; and solving for &nbsp;<math style="vertical-align: 0px">x.</math>
 +
|-
 +
|'''2.''' The volume of a solid obtained by rotating a region around the &nbsp;<math style="vertical-align: 0px">x</math>-axis using disk method is given by 
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int \pi r^2~dx,</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">r</math>&nbsp; is the radius of the disk.
 
|-
 
|-
 
|
 
|

Revision as of 10:18, 3 March 2017

Find the volume of the solid obtained by rotating about the  -axis the region bounded by    and  

Foundations:  
1. You can find the intersection points of two functions, say  

        by setting    and solving for  

2. The volume of a solid obtained by rotating a region around the  -axis using disk method is given by

          where    is the radius of the disk.


Solution:

Step 1:  
Step 2:  


Final Answer:  

Return to Sample Exam