Difference between revisions of "009B Sample Final 3, Problem 6"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Kayla Murray (talk | contribs) | Kayla Murray (talk | contribs)  | ||
| Line 33: | Line 33: | ||
| |       <math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math> | |       <math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math> | ||
| |- | |- | ||
| − | |If we multiply both sides of this equation by  <math>x(2x-1),</math>  we get   | + | |If we multiply both sides of this equation by  <math style="vertical-align: -5px">x(2x-1),</math>  we get   | 
| |- | |- | ||
| |       <math>3x-1=A(2x-1)+Bx.</math> | |       <math>3x-1=A(2x-1)+Bx.</math> | ||
| Line 41: | Line 41: | ||
| !Step 2:   | !Step 2:   | ||
| |- | |- | ||
| − | |Now, if we let  <math>x=0,</math>  we get  <math>A=1.</math> | + | |Now, if we let  <math style="vertical-align: -4px">x=0,</math>  we get  <math style="vertical-align: -2px">A=1.</math> | 
| |- | |- | ||
| − | |If we let  <math>x=\frac{1}{2},</math>  we get  <math>B=1.</math>   | + | |If we let  <math style="vertical-align: -13px">x=\frac{1}{2},</math>  we get  <math style="vertical-align: -2px">B=1.</math>   | 
| |- | |- | ||
| |Therefore,   | |Therefore,   | ||
| Line 53: | Line 53: | ||
| !Step 3:   | !Step 3:   | ||
| |- | |- | ||
| − | | | + | |Now, we have | 
| |- | |- | ||
| |        <math>\begin{array}{rcl} | |        <math>\begin{array}{rcl} | ||
| Line 63: | Line 63: | ||
| \end{array}</math> | \end{array}</math> | ||
| |- | |- | ||
| − | |Now, we use  <math>u</math>-substitution.   | + | |Now, we use  <math style="vertical-align: 0px">u</math>-substitution.   | 
| |- | |- | ||
| − | |Let  <math>u=2x-1.</math> | + | |Let  <math style="vertical-align: -1px">u=2x-1.</math> | 
| |- | |- | ||
| − | |Then,  <math>du=2dx</math>  and  <math>\frac{du}{2}=dx.</math> | + | |Then,  <math style="vertical-align: -1px">du=2dx</math>  and  <math style="vertical-align: -13px">\frac{du}{2}=dx.</math> | 
| |- | |- | ||
| |Hence, we have | |Hence, we have | ||
Revision as of 10:07, 3 March 2017
Find the following integrals
(a)
(b)
| Foundations: | 
|---|
| Through partial fraction decomposition, we can write the fraction | 
| for some constants | 
Solution:
(a)
| Step 1: | 
|---|
| First, we factor the denominator to get | 
| We use the method of partial fraction decomposition. | 
| We let | 
| If we multiply both sides of this equation by we get | 
| Step 2: | 
|---|
| Now, if we let we get | 
| If we let we get | 
| Therefore, | 
| Step 3: | 
|---|
| Now, we have | 
| Now, we use -substitution. | 
| Let | 
| Then, and | 
| Hence, we have | 
(b)
| Step 1: | 
|---|
| We begin by using -substitution. | 
| Let | 
| Then, and | 
| Also, we have | 
| Hence, | 
| Using all this information, we get | 
| Step 2: | 
|---|
| Now, we have | 
| Step 3: | 
|---|
| Now, for the remaining integral, we use partial fraction decomposition. | 
| Let | 
| Then, we multiply this equation by to get | 
| If we let we get | 
| If we let we get | 
| Thus, we have | 
| Using this equation, we have | 
| Step 4: | 
|---|
| To complete this integral, we need to use -substitution. | 
| For the first integral, let Then, | 
| For the second integral, let Then, | 
| Finally, we integrate to get | 
| Final Answer: | 
|---|
| (a) | 
| (b) |