Difference between revisions of "009B Sample Final 3, Problem 6"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Kayla Murray (talk | contribs) | Kayla Murray (talk | contribs)  | ||
| Line 12: | Line 12: | ||
| |       <math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math> | |       <math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math> | ||
| |- | |- | ||
| − | | | + | |for some constants <math style="vertical-align: -4px">A,B.</math> | 
| |} | |} | ||
| Line 33: | Line 33: | ||
| |       <math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math> | |       <math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math> | ||
| |- | |- | ||
| − | |If we multiply both sides of this equation by <math>x(2x-1),</math> we get   | + | |If we multiply both sides of this equation by  <math>x(2x-1),</math>  we get   | 
| |- | |- | ||
| |       <math>3x-1=A(2x-1)+Bx.</math> | |       <math>3x-1=A(2x-1)+Bx.</math> | ||
| Line 41: | Line 41: | ||
| !Step 2:   | !Step 2:   | ||
| |- | |- | ||
| − | |Now, if we let <math>x=0,</math> we get <math>A=1.</math> | + | |Now, if we let  <math>x=0,</math>  we get  <math>A=1.</math> | 
| |- | |- | ||
| − | |If we let <math>x=\frac{1}{2},</math> we get <math>B=1.</math>   | + | |If we let  <math>x=\frac{1}{2},</math>  we get  <math>B=1.</math>   | 
| |- | |- | ||
| |Therefore,   | |Therefore,   | ||
| Line 63: | Line 63: | ||
| \end{array}</math> | \end{array}</math> | ||
| |- | |- | ||
| − | |Now, we use <math>u</math>-substitution.   | + | |Now, we use  <math>u</math>-substitution.   | 
| |- | |- | ||
| − | |Let <math>u=2x-1.</math> | + | |Let  <math>u=2x-1.</math> | 
| |- | |- | ||
| − | |Then, <math>du=2dx</math> and <math>\frac{du}{2}=dx.</math> | + | |Then,  <math>du=2dx</math>  and  <math>\frac{du}{2}=dx.</math> | 
| |- | |- | ||
| |Hence, we have | |Hence, we have | ||
| Line 85: | Line 85: | ||
| !Step 1:     | !Step 1:     | ||
| |- | |- | ||
| − | |We begin by using <math>u</math>-substitution.   | + | |We begin by using  <math>u</math>-substitution.   | 
| |- | |- | ||
| − | |Let <math>u=\sqrt{x+1}.</math> | + | |Let  <math>u=\sqrt{x+1}.</math> | 
| |- | |- | ||
| − | |Then, <math>u^2=x+1</math> and <math>x=u^2-1.</math> | + | |Then,  <math>u^2=x+1</math>  and  <math>x=u^2-1.</math> | 
| |- | |- | ||
| |Also, we have   | |Also, we have   | ||
| Line 101: | Line 101: | ||
| \end{array}</math> | \end{array}</math> | ||
| |- | |- | ||
| − | |Hence, <math>dx=2udu</math> | + | |Hence,  <math>dx=2udu.</math> | 
| |- | |- | ||
| |Using all this information, we get | |Using all this information, we get | ||
| |- | |- | ||
| − | |<math>\int \frac{\sqrt{x+1}}{x}~dx=\int \frac{2u^2}{u^2-1}~du.</math> | + | |       <math>\int \frac{\sqrt{x+1}}{x}~dx=\int \frac{2u^2}{u^2-1}~du.</math> | 
| |} | |} | ||
| Line 131: | Line 131: | ||
| |Now, for the remaining integral, we use partial fraction decomposition.   | |Now, for the remaining integral, we use partial fraction decomposition.   | ||
| |- | |- | ||
| − | |Let <math>\frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.</math> | + | |Let  <math>\frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.</math> | 
| |- | |- | ||
| − | |Then, we multiply this equation by <math>(x-1)(x+1)</math> to get | + | |Then, we multiply this equation by  <math>(x-1)(x+1)</math>  to get | 
| |- | |- | ||
| − | |<math>2=A(x-1)+B(x+1).</math> | + | |       <math>2=A(x-1)+B(x+1).</math> | 
| |- | |- | ||
| − | |If we let <math>x=1,</math> we get <math>B=1.</math> | + | |If we let  <math>x=1,</math>  we get  <math>B=1.</math> | 
| |- | |- | ||
| − | |If we let <math>x=-1,</math> we get <math>A=-1.</math> | + | |If we let  <math>x=-1,</math>  we get  <math>A=-1.</math> | 
| |- | |- | ||
| − | |Thus, we have <math>\frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.</math> | + | |Thus, we have  <math>\frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.</math> | 
| |- | |- | ||
| |Using this equation, we have | |Using this equation, we have | ||
| Line 155: | Line 155: | ||
| !Step 4:   | !Step 4:   | ||
| |- | |- | ||
| − | |To complete this integral, we need to use <math>u</math>-substitution. | + | |To complete this integral, we need to use  <math>u</math>-substitution. | 
| |- | |- | ||
| − | |For the first integral, let <math>t=u+1.</math> Then, <math>dt=du.</math> | + | |For the first integral, let  <math>t=u+1.</math>  Then,  <math>dt=du.</math> | 
| |- | |- | ||
| − | |For the second integral, let <math>v=u-1.</math> Then, <math>dv=du.</math> | + | |For the second integral, let  <math>v=u-1.</math>  Then,  <math>dv=du.</math> | 
| |- | |- | ||
| |Finally, we integrate to get | |Finally, we integrate to get | ||
Revision as of 10:00, 3 March 2017
Find the following integrals
(a)
(b)
| Foundations: | 
|---|
| Through partial fraction decomposition, we can write the fraction | 
| for some constants | 
Solution:
(a)
| Step 1: | 
|---|
| First, we factor the denominator to get | 
| We use the method of partial fraction decomposition. | 
| We let | 
| If we multiply both sides of this equation by we get | 
| Step 2: | 
|---|
| Now, if we let we get | 
| If we let we get | 
| Therefore, | 
| Step 3: | 
|---|
| Therefore, we have | 
| Now, we use -substitution. | 
| Let | 
| Then, and | 
| Hence, we have | 
(b)
| Step 1: | 
|---|
| We begin by using -substitution. | 
| Let | 
| Then, and | 
| Also, we have | 
| Hence, | 
| Using all this information, we get | 
| Step 2: | 
|---|
| Now, we have | 
| Step 3: | 
|---|
| Now, for the remaining integral, we use partial fraction decomposition. | 
| Let | 
| Then, we multiply this equation by to get | 
| If we let we get | 
| If we let we get | 
| Thus, we have | 
| Using this equation, we have | 
| Step 4: | 
|---|
| To complete this integral, we need to use -substitution. | 
| For the first integral, let Then, | 
| For the second integral, let Then, | 
| Finally, we integrate to get | 
| Final Answer: | 
|---|
| (a) | 
| (b) |