Difference between revisions of "009B Sample Final 3, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 105: | Line 105: | ||
|Using all this information, we get | |Using all this information, we get | ||
|- | |- | ||
| − | | | + | |<math>\int \frac{\sqrt{x+1}}{x}~dx=\int \frac{2u^2}{u^2-1}~du.</math> |
|} | |} | ||
| Line 111: | Line 111: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, we have |
|- | |- | ||
| − | | | + | | <math>\begin{array}{rcl} |
| + | \displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{\int \frac{2u^2-2+2}{u^2-1}~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int \frac{2(u^2-1)}{u^2-1}~du+\int \frac{2}{u^2-1}~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int 2~du+\int \frac{2}{u^2-1}~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{2u+\int \frac{2}{u^2-1}~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{2\sqrt{x+1}+\int \frac{2}{(u-1)(u+1)}~du.} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 3: | ||
| + | |- | ||
| + | |Now, for the remaining integral, we use partial fraction decomposition. | ||
| + | |- | ||
| + | |Let <math>\frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.</math> | ||
| + | |- | ||
| + | |Then, we multiply this equation by <math>(x-1)(x+1)</math> to get | ||
| + | |- | ||
| + | |<math>2=A(x-1)+B(x+1).</math> | ||
| + | |- | ||
| + | |If we let <math>x=1,</math> we get <math>B=1.</math> | ||
| + | |- | ||
| + | |If we let <math>x=-1,</math> we get <math>A=-1.</math> | ||
| + | |- | ||
| + | |Thus, we have <math>\frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.</math> | ||
| + | |- | ||
| + | |Using this equation, we have | ||
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{(u+1)}+\frac{1}{u-1}~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{(u+1)}~du+\int \frac{1}{u-1}~du.}\\ | ||
| + | \end{array}</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 4: | ||
| + | |- | ||
| + | |To complete this integral, we need to use <math>u</math>-substitution. | ||
| + | |- | ||
| + | |For the first integral, let <math>t=u+1.</math> Then, <math>dt=du.</math> | ||
| + | |- | ||
| + | |For the second integral, let <math>v=u-1.</math> Then, <math>dv=du.</math> | ||
| + | |- | ||
| + | |Finally, we integrate to get | ||
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{t}~dt+\int \frac{1}{v}~dv}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{2\sqrt{x+1}+\ln|t|+\ln|v|+C}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{2\sqrt{x+1}+\ln|u+1|+\ln|u-1|+C}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{2\sqrt{x+1}+\ln|\sqrt{x+1}+1|+\ln|\sqrt{x+1}-1|+C.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 122: | Line 180: | ||
| '''(a)''' <math>\ln |x|+\frac{1}{2}\ln |2x-1|+C</math> | | '''(a)''' <math>\ln |x|+\frac{1}{2}\ln |2x-1|+C</math> | ||
|- | |- | ||
| − | |'''(b)''' | + | | '''(b)''' <math>2\sqrt{x+1}+\ln|\sqrt{x+1}+1|+\ln|\sqrt{x+1}-1|+C</math> |
|} | |} | ||
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 09:56, 3 March 2017
Find the following integrals
(a)
(b)
| Foundations: |
|---|
| Through partial fraction decomposition, we can write the fraction |
| for some constants |
Solution:
(a)
| Step 1: |
|---|
| First, we factor the denominator to get |
| We use the method of partial fraction decomposition. |
| We let |
| If we multiply both sides of this equation by we get |
| Step 2: |
|---|
| Now, if we let we get |
| If we let we get |
| Therefore, |
| Step 3: |
|---|
| Therefore, we have |
| Now, we use -substitution. |
| Let |
| Then, and |
| Hence, we have |
(b)
| Step 1: |
|---|
| We begin by using -substitution. |
| Let |
| Then, and |
| Also, we have |
| Hence, . |
| Using all this information, we get |
| Step 2: |
|---|
| Now, we have |
| Step 3: |
|---|
| Now, for the remaining integral, we use partial fraction decomposition. |
| Let |
| Then, we multiply this equation by to get |
| If we let we get |
| If we let we get |
| Thus, we have |
| Using this equation, we have |
| Step 4: |
|---|
| To complete this integral, we need to use -substitution. |
| For the first integral, let Then, |
| For the second integral, let Then, |
| Finally, we integrate to get |
| Final Answer: |
|---|
| (a) |
| (b) |