Difference between revisions of "009B Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 105: Line 105:
 
|Using all this information, we get
 
|Using all this information, we get
 
|-
 
|-
|
+
|<math>\int \frac{\sqrt{x+1}}{x}~dx=\int \frac{2u^2}{u^2-1}~du.</math>
 
|}
 
|}
  
Line 111: Line 111:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{\int \frac{2u^2-2+2}{u^2-1}~du}\\
 +
&&\\
 +
& = & \displaystyle{\int \frac{2(u^2-1)}{u^2-1}~du+\int \frac{2}{u^2-1}~du}\\
 +
&&\\
 +
& = & \displaystyle{\int 2~du+\int \frac{2}{u^2-1}~du}\\
 +
&&\\
 +
& = & \displaystyle{2u+\int \frac{2}{u^2-1}~du}\\
 +
&&\\
 +
& = & \displaystyle{2\sqrt{x+1}+\int \frac{2}{(u-1)(u+1)}~du.}
 +
\end{array}</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, for the remaining integral, we use partial fraction decomposition.
 +
|-
 +
|Let <math>\frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.</math>
 +
|-
 +
|Then, we multiply this equation by <math>(x-1)(x+1)</math> to get
 +
|-
 +
|<math>2=A(x-1)+B(x+1).</math>
 +
|-
 +
|If we let <math>x=1,</math> we get <math>B=1.</math>
 +
|-
 +
|If we let <math>x=-1,</math> we get <math>A=-1.</math>
 +
|-
 +
|Thus, we have <math>\frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.</math>
 +
|-
 +
|Using this equation, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{(u+1)}+\frac{1}{u-1}~du}\\
 +
&&\\
 +
& = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{(u+1)}~du+\int \frac{1}{u-1}~du.}\\
 +
\end{array}</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 4: &nbsp;
 +
|-
 +
|To complete this integral, we need to use <math>u</math>-substitution.
 +
|-
 +
|For the first integral, let <math>t=u+1.</math> Then, <math>dt=du.</math>
 +
|-
 +
|For the second integral, let <math>v=u-1.</math> Then, <math>dv=du.</math>
 +
|-
 +
|Finally, we integrate to get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{t}~dt+\int \frac{1}{v}~dv}\\
 +
&&\\
 +
& = & \displaystyle{2\sqrt{x+1}+\ln|t|+\ln|v|+C}\\
 +
&&\\
 +
& = & \displaystyle{2\sqrt{x+1}+\ln|u+1|+\ln|u-1|+C}\\
 +
&&\\
 +
& = & \displaystyle{2\sqrt{x+1}+\ln|\sqrt{x+1}+1|+\ln|\sqrt{x+1}-1|+C.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 122: Line 180:
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;<math>\ln |x|+\frac{1}{2}\ln |2x-1|+C</math>  
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;<math>\ln |x|+\frac{1}{2}\ln |2x-1|+C</math>  
 
|-
 
|-
|'''(b)'''  
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;<math>2\sqrt{x+1}+\ln|\sqrt{x+1}+1|+\ln|\sqrt{x+1}-1|+C</math>
 
|}
 
|}
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 09:56, 3 March 2017

Find the following integrals

(a)  

(b)  

Foundations:  
Through partial fraction decomposition, we can write the fraction
       
       for some constants


Solution:

(a)

Step 1:  
First, we factor the denominator to get
       
We use the method of partial fraction decomposition.
We let
       
If we multiply both sides of this equation by we get
       
Step 2:  
Now, if we let we get
If we let we get
Therefore,
       
Step 3:  
Therefore, we have
       
Now, we use -substitution.
Let
Then, and
Hence, we have
       

(b)

Step 1:  
We begin by using -substitution.
Let
Then, and
Also, we have
       
Hence, .
Using all this information, we get
Step 2:  
Now, we have
       
Step 3:  
Now, for the remaining integral, we use partial fraction decomposition.
Let
Then, we multiply this equation by to get
If we let we get
If we let we get
Thus, we have
Using this equation, we have
       
Step 4:  
To complete this integral, we need to use -substitution.
For the first integral, let Then,
For the second integral, let Then,
Finally, we integrate to get
       


Final Answer:  
   (a)   
   (b)   

Return to Sample Exam