Difference between revisions of "009B Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 85: Line 85:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We begin by using <math>u</math>-substitution.
 +
|-
 +
|Let <math>u=\sqrt{x+1}.</math>
 +
|-
 +
|Then, <math>u^2=x+1</math> and <math>x=u^2-1.</math>
 +
|-
 +
|Also, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{du} & = & \displaystyle{\frac{1}{2} (x+1)^{\frac{-1}{2}}dx}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2\sqrt{x+1}}dx}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2u}dx.}
 +
\end{array}</math>
 +
|-
 +
|Hence, <math>dx=2udu</math>.
 +
|-
 +
|Using all this information, we get
 
|-
 
|-
 
|
 
|

Revision as of 15:59, 2 March 2017

Find the following integrals

(a)  

(b)  

Foundations:  
Through partial fraction decomposition, we can write the fraction
       
       for some constants


Solution:

(a)

Step 1:  
First, we factor the denominator to get
       
We use the method of partial fraction decomposition.
We let
       
If we multiply both sides of this equation by we get
       
Step 2:  
Now, if we let we get
If we let we get
Therefore,
       
Step 3:  
Therefore, we have
       
Now, we use -substitution.
Let
Then, and
Hence, we have
       

(b)

Step 1:  
We begin by using -substitution.
Let
Then, and
Also, we have
       
Hence, .
Using all this information, we get
Step 2:  


Final Answer:  
   (a)   
(b)

Return to Sample Exam