Difference between revisions of "009B Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 65: Line 65:
 
|Now, we use <math>u</math>-substitution.  
 
|Now, we use <math>u</math>-substitution.  
 
|-
 
|-
|
+
|Let <math>u=2x-1.</math>
 +
|-
 +
|Then, <math>du=2dx</math> and <math>\frac{du}{2}=dx.</math>
 +
|-
 +
|Hence, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{3x-1}{2x^2-x}~dx} & = & \displaystyle{\ln |x|+\frac{1}{2}\int \frac{1}{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\ln |x|+\frac{1}{2}\ln |u|+C}\\
 +
&&\\
 +
& = & \displaystyle{\ln |x|+\frac{1}{2}\ln |2x-1|+C.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 90: Line 102:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;<math>\ln |x|+\frac{1}{2}\ln |2x-1|+C</math>
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  
 
|}
 
|}
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:14, 2 March 2017

Find the following integrals

(a)  

(b)  

Foundations:  
Through partial fraction decomposition, we can write the fraction
       
       for some constants


Solution:

(a)

Step 1:  
First, we factor the denominator to get
       
We use the method of partial fraction decomposition.
We let
       
If we multiply both sides of this equation by we get
       
Step 2:  
Now, if we let we get
If we let we get
Therefore,
       
Step 3:  
Therefore, we have
       
Now, we use -substitution.
Let
Then, and
Hence, we have
       

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)   
(b)

Return to Sample Exam