Difference between revisions of "009B Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 25: Line 25:
 
|First, we factor the denominator to get
 
|First, we factor the denominator to get
 
|-
 
|-
|<math>\int \frac{3x-1}{2x^2-x}~dx=\int \frac{3x-1}{x(2x-1)}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int \frac{3x-1}{2x^2-x}~dx=\int \frac{3x-1}{x(2x-1)}.</math>
 
|-
 
|-
 
|We use the method of partial fraction decomposition.
 
|We use the method of partial fraction decomposition.
Line 31: Line 31:
 
|We let  
 
|We let  
 
|-
 
|-
|<math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math>
 
|}
 
|}
  

Revision as of 13:46, 2 March 2017

Find the following integrals

(a)  

(b)  

Foundations:  
Through partial fraction decomposition, we can write the fraction
       
       for some constants


Solution:

(a)

Step 1:  
First, we factor the denominator to get
       
We use the method of partial fraction decomposition.
We let
       
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
(a)
(b)

Return to Sample Exam