Difference between revisions of "009B Sample Final 3, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 25: | Line 25: | ||
|We use the Direct Comparison Test for Improper Integrals. | |We use the Direct Comparison Test for Improper Integrals. | ||
|- | |- | ||
| − | |For all <math>x</math> in <math>[1,\infty),</math> | + | |For all <math style="vertical-align: 0px">x</math> in <math style="vertical-align: -5px">[1,\infty),</math> |
|- | |- | ||
| <math>0\le \frac{\sin^2(x)}{x^3} \le \frac{1}{x^3}.</math> | | <math>0\le \frac{\sin^2(x)}{x^3} \le \frac{1}{x^3}.</math> | ||
| Line 31: | Line 31: | ||
|Also, | |Also, | ||
|- | |- | ||
| − | | <math>\frac{\sin^2(x)}{x^3}</math> and <math>\frac{1}{x^3}</math> | + | | <math style="vertical-align: -15px">\frac{\sin^2(x)}{x^3}</math> and <math style="vertical-align: -15px">\frac{1}{x^3}</math> |
|- | |- | ||
| − | |are continuous on <math>[1,\infty).</math> | + | |are continuous on <math style="vertical-align: -5px">[1,\infty).</math> |
|} | |} | ||
| Line 51: | Line 51: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
| − | |Since <math>\int_1^\infty \frac{1}{x^3}~dx</math> converges, | + | |Since <math style="vertical-align: -15px">\int_1^\infty \frac{1}{x^3}~dx</math> converges, |
|- | |- | ||
| <math>\int_1^\infty \frac{\sin^2(x)}{x^3}~dx</math> | | <math>\int_1^\infty \frac{\sin^2(x)}{x^3}~dx</math> | ||
Revision as of 10:17, 2 March 2017
Does the following integral converge or diverge? Prove your answer!
| Foundations: |
|---|
| Direct Comparison Test for Improper Integrals |
| Let and be continuous on |
| where for all in |
| 1. If converges, then converges. |
| 2. If diverges, then diverges. |
Solution:
| Step 1: |
|---|
| We use the Direct Comparison Test for Improper Integrals. |
| For all in |
| Also, |
| and |
| are continuous on |
| Step 2: |
|---|
| Now, we have |
| Since converges, |
| converges by the Direct Comparison Test for Improper Integrals. |
| Final Answer: |
|---|
| converges |