Difference between revisions of "009B Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 138: Line 138:
 
|Therefore, the integral becomes  
 
|Therefore, the integral becomes  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -19px">\int_0^2 \cos(u)~du.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -19px">\int_0^1 \cos(u)~du.</math>
 
|-
 
|-
 
|
 
|
Line 150: Line 150:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\int_1^e \frac{\cos(\ln(x))}{x}~dx} & = & \displaystyle{\int_0^2 \cos(u)~du}\\
+
\displaystyle{\int_1^e \frac{\cos(\ln(x))}{x}~dx} & = & \displaystyle{\int_0^1 \cos(u)~du}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\sin(u)\bigg|_0^1}\\
 
& = & \displaystyle{\sin(u)\bigg|_0^1}\\

Revision as of 16:34, 1 March 2017

Evaluate the following integrals.

(a)  

(b)  

(c)  

Foundations:  
1.
       
2. How would you integrate  

        You could use  -substitution.

        Let  
        Then,  

        Thus,

       


Solution:

(a)

Step 1:  
First, we notice
       
Now, we use  -substitution.
Let  
Then,    and  
Also, we need to change the bounds of integration.
Plugging in our values into the equation  
we get    and  
Therefore, the integral becomes
       
Step 2:  
We now have

       

(b)

Step 1:  
We use  -substitution. Let  
Then,    and  
Therefore, the integral becomes
       
Step 2:  
We now have
       

(c)

Step 1:  
We use  -substitution.
Let  
Then,  
Also, we need to change the bounds of integration.
Plugging in our values into the equation  
we get    and  
Therefore, the integral becomes
       
Step 2:  
We now have

       


Final Answer:  
   (a)    
   (b)    
   (c)    

Return to Sample Exam