Difference between revisions of "009B Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 124: Line 124:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We use &nbsp;<math>u</math>-substitution.
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -5px">u=\ln(x).</math>
 +
|-
 +
|Then, &nbsp;<math style="vertical-align: -5px">du=\frac{1}{x}dx.</math>
 +
|-
 +
|Also, we need to change the bounds of integration.
 +
|-
 +
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -5px">u=\ln(x),</math>
 +
|-
 +
|we get &nbsp;<math style="vertical-align: -15px">u_1=\ln(1)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -16px">u_2=\ln(e)=1.</math>
 +
|-
 +
|Therefore, the integral becomes
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -19px">\int_0^2 \cos(u)~du.</math>
 
|-
 
|-
 
|
 
|
Line 131: Line 145:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|We now have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int_1^e \frac{\cos(\ln(x))}{x}~dx} & = & \displaystyle{\int_0^2 \cos(u)~du}\\
 +
&&\\
 +
& = & \displaystyle{\sin(u)\bigg|_0^1}\\
 +
&&\\
 +
& = & \displaystyle{\sin(1)-\sin(0)}\\
 +
&&\\
 +
& = & \displaystyle{\sin(1).}
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
Line 145: Line 170:
 
|&nbsp; &nbsp;'''(b)''' &nbsp; &nbsp;<math>-\frac{1}{3(1+x^3)}+C</math>
 
|&nbsp; &nbsp;'''(b)''' &nbsp; &nbsp;<math>-\frac{1}{3(1+x^3)}+C</math>
 
|-
 
|-
|&nbsp; &nbsp;'''(c)''' &nbsp; &nbsp;  
+
|&nbsp; &nbsp;'''(c)''' &nbsp; &nbsp;<math>\sin(1)</math>
 
|}
 
|}
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:33, 1 March 2017

Evaluate the following integrals.

(a)  

(b)  

(c)  

Foundations:  
1.
       
2. How would you integrate  

        You could use  -substitution.

        Let  
        Then,  

        Thus,

       


Solution:

(a)

Step 1:  
First, we notice
       
Now, we use  -substitution.
Let  
Then,    and  
Also, we need to change the bounds of integration.
Plugging in our values into the equation  
we get    and  
Therefore, the integral becomes
       
Step 2:  
We now have

       

(b)

Step 1:  
We use  -substitution. Let  
Then,    and  
Therefore, the integral becomes
       
Step 2:  
We now have
       

(c)

Step 1:  
We use  -substitution.
Let  
Then,  
Also, we need to change the bounds of integration.
Plugging in our values into the equation  
we get    and  
Therefore, the integral becomes
       
Step 2:  
We now have

       


Final Answer:  
   (a)    
   (b)    
   (c)    

Return to Sample Exam