Difference between revisions of "009B Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 45: Line 45:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we notice
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+16x^2}~dx=\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+(4x)^2}~dx.</math>
 +
|-
 +
|Now, we use &nbsp;<math>u</math>-substitution.
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -5px">u=4x.</math>
 +
|-
 +
|Then, &nbsp;<math style="vertical-align: -5px">du=4dx</math>&nbsp; and &nbsp;<math>\frac{du}{4}=dx.</math>
 +
|-
 +
|Also, we need to change the bounds of integration.
 +
|-
 +
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -5px">u=4x,</math>
 +
|-
 +
|we get &nbsp;<math style="vertical-align: -15px">u_1=4(0)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -16px">u_2=4\bigg(\frac{\sqrt{3}}{4}\bigg)=\sqrt{3}.</math>
 
|-
 
|-
|
+
|Therefore, the integral becomes
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -19px">\frac{1}{4}\int_0^{\sqrt{3}} \frac{1}{1+u^2}~du.</math>
 
|-
 
|-
 
|
 
|
Line 57: Line 71:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|We now have
|-
 
|
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+16x^2}~dx} & = & \displaystyle{\frac{1}{4}\int_0^{\sqrt{3}} \frac{1}{1+u^2}~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{4}\arctan(u)\bigg|_0^{\sqrt{3}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{4}\arctan(\sqrt{3})-\frac{1}{4}\arctan(0)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{4}\bigg(\frac{\pi}{3}\bigg)-0}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\pi}{12}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 106: Line 127:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp;'''(a)''' &nbsp; &nbsp;<math>\frac{\pi}{12}</math>
 
|-
 
|-
|'''(b)'''  
+
|&nbsp; &nbsp;'''(b)''' &nbsp; &nbsp;
 
|-
 
|-
|'''(c)'''  
+
|&nbsp; &nbsp;'''(c)''' &nbsp; &nbsp;
 
|}
 
|}
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:18, 1 March 2017

Evaluate the following integrals.

(a)  

(b)  

(c)  

Foundations:  
1.
       
2. How would you integrate  

        You could use  -substitution.

        Let  
        Then,  

        Thus,

       


Solution:

(a)

Step 1:  
First, we notice
       
Now, we use  -substitution.
Let  
Then,    and  
Also, we need to change the bounds of integration.
Plugging in our values into the equation  
we get    and  
Therefore, the integral becomes
       
Step 2:  
We now have

       

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    
   (c)    

Return to Sample Exam