Difference between revisions of "009B Sample Final 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 45: | Line 45: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |First, we notice |
+ | |- | ||
+ | | <math>\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+16x^2}~dx=\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+(4x)^2}~dx.</math> | ||
+ | |- | ||
+ | |Now, we use <math>u</math>-substitution. | ||
+ | |- | ||
+ | |Let <math style="vertical-align: -5px">u=4x.</math> | ||
+ | |- | ||
+ | |Then, <math style="vertical-align: -5px">du=4dx</math> and <math>\frac{du}{4}=dx.</math> | ||
+ | |- | ||
+ | |Also, we need to change the bounds of integration. | ||
+ | |- | ||
+ | |Plugging in our values into the equation <math style="vertical-align: -5px">u=4x,</math> | ||
+ | |- | ||
+ | |we get <math style="vertical-align: -15px">u_1=4(0)=0</math> and <math style="vertical-align: -16px">u_2=4\bigg(\frac{\sqrt{3}}{4}\bigg)=\sqrt{3}.</math> | ||
|- | |- | ||
− | | | + | |Therefore, the integral becomes |
|- | |- | ||
− | | | + | | <math style="vertical-align: -19px">\frac{1}{4}\int_0^{\sqrt{3}} \frac{1}{1+u^2}~du.</math> |
|- | |- | ||
| | | | ||
Line 57: | Line 71: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |We now have |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+16x^2}~dx} & = & \displaystyle{\frac{1}{4}\int_0^{\sqrt{3}} \frac{1}{1+u^2}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{4}\arctan(u)\bigg|_0^{\sqrt{3}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{4}\arctan(\sqrt{3})-\frac{1}{4}\arctan(0)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{4}\bigg(\frac{\pi}{3}\bigg)-0}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\pi}{12}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 106: | Line 127: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' <math>\frac{\pi}{12}</math> |
|- | |- | ||
− | |'''(b)''' | + | | '''(b)''' |
|- | |- | ||
− | |'''(c)''' | + | | '''(c)''' |
|} | |} | ||
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 16:18, 1 March 2017
Evaluate the following integrals.
(a)
(b)
(c)
Foundations: |
---|
1. |
2. How would you integrate |
You could use -substitution. |
Let |
Then, |
Thus, |
|
Solution:
(a)
Step 1: |
---|
First, we notice |
Now, we use -substitution. |
Let |
Then, and |
Also, we need to change the bounds of integration. |
Plugging in our values into the equation |
we get and |
Therefore, the integral becomes |
Step 2: |
---|
We now have |
|
(b)
Step 1: |
---|
Step 2: |
---|
(c)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |
(c) |