Difference between revisions of "009B Sample Final 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 55: Line 55:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|First, we use the identity <math>\sin^2 x=1-\cos^2 x</math> to get
+
|First, we use the identity &nbsp;<math style="vertical-align: -1px">\sin^2 x=1-\cos^2 x</math>&nbsp; to get
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
Line 67: Line 67:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we use <math>u</math>-substitution.
+
|Now, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.
 
|-
 
|-
|Let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx</math> and <math>-du=\sin(x)dx.</math>
+
|Let &nbsp;<math style="vertical-align: -5px">u=\cos(x).</math>&nbsp; Then, &nbsp;<math style="vertical-align: -5px">du=-\sin(x)dx</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">-du=\sin(x)dx.</math>
 
|-
 
|-
 
|Therefore, we have
 
|Therefore, we have

Revision as of 17:11, 28 February 2017

Find the following integrals.

(a)  

(b)  

Foundations:  
1. Integration by parts tells us that
       
2. Since    we have
       


Solution:

(a)

Step 1:  
To calculate this integral, we use integration by parts.
Let    and  
Then,    and  
Therefore, we have
       
Step 2:  
Then, we integrate to get
       

(b)

Step 1:  
First, we use the identity    to get
       
Step 2:  
Now, we use  -substitution.
Let    Then,    and  
Therefore, we have
       


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam