Difference between revisions of "009B Sample Final 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 55: Line 55:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we use the identity <math>\sin^2 x=1-\cos^2 x</math> to get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \sin^3(x)\cos^2(x)~dx} & = & \displaystyle{\int \sin^2 x (\cos^2 x) \sin x~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int (1-\cos^2 x)(\cos^2 x) \sin x~dx.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 63: Line 67:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we use <math>u</math>-substitution.
 
|-
 
|-
|
+
|Let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx</math> and <math>-du=\sin(x)dx.</math>
 +
|-
 +
|Therefore, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \sin^3(x)\cos^2(x)~dx} & = & \displaystyle{\int (-1)(1-u^2)u^2~du}\\
 +
&&\\
 +
& = & \displaystyle{\int u^4-u^2~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{u^5}{5}-\frac{u^3}{3}+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\cos^5 x}{5}-\frac{\cos^3 x}{3}+C.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 74: Line 90:
 
|&nbsp; &nbsp;'''(a)''' &nbsp; &nbsp;<math>x\sin x +\cos x+C</math>
 
|&nbsp; &nbsp;'''(a)''' &nbsp; &nbsp;<math>x\sin x +\cos x+C</math>
 
|-
 
|-
|&nbsp; &nbsp;'''(b)''' &nbsp; &nbsp;  
+
|&nbsp; &nbsp;'''(b)''' &nbsp; &nbsp;<math>\frac{\cos^5 x}{5}-\frac{\cos^3 x}{3}+C</math>
 
|}
 
|}
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:07, 28 February 2017

Find the following integrals.

(a)  

(b)  

Foundations:  
1. Integration by parts tells us that
       
2. Since    we have
       


Solution:

(a)

Step 1:  
To calculate this integral, we use integration by parts.
Let    and  
Then,    and  
Therefore, we have
       
Step 2:  
Then, we integrate to get
       

(b)

Step 1:  
First, we use the identity to get
       
Step 2:  
Now, we use -substitution.
Let . Then, and
Therefore, we have
       


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam