Difference between revisions of "009B Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 38: Line 38:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|Setting <math style="vertical-align: -14px">\sin x=\frac{2}{\pi}x</math>, we get three solutions: <math>x=0,\frac{\pi}{2},\frac{-\pi}{2}.</math>
+
|Setting &nbsp;<math style="vertical-align: -4px">\cos x=1-\cos x,</math>&nbsp; we get &nbsp;<math style="vertical-align: 0px">2\cos x=2.</math>
 
|-
 
|-
|So, the three intersection points are <math style="vertical-align: -15px">(0,0),\bigg(\frac{\pi}{2},1\bigg),\bigg(\frac{-\pi}{2},-1\bigg)</math>.
+
|Therefore, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\cos x=1.</math>
 +
|-
 +
|In the interval <math>0\le x\le 2\pi,</math> the solutions to this equation are
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>x=0</math> and <math>x=2\pi.</math>
 +
|-
 +
|Plugging these values into our equations,
 +
|-
 +
|we get the intersection points &nbsp;<math>(0,1)</math> and <math>(2\pi,1).</math>
 
|-
 
|-
 
|You can see these intersection points on the graph shown in Step 1.
 
|You can see these intersection points on the graph shown in Step 1.
Line 50: Line 60:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Using symmetry of the graph, the area bounded by the two functions is given by   
+
|The area bounded by the two functions is given by   
 
|-
 
|-
 
|
 
|
::<math>2\int_0^{\frac{\pi}{2}}\bigg(\sin(x)-\frac{2}{\pi}x\bigg)~dx.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\int_0^{2\pi} (2-\cos x)-\cos x~dx.</math>
 
|-
 
|-
 
|
 
|
Line 64: Line 74:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
\displaystyle{2\int_0^{\frac{\pi}{2}}\bigg(\sin (x)-\frac{2}{\pi}x\bigg)~dx} & {=} & \displaystyle{2\bigg(-\cos (x)-\frac{x^2}{\pi}\bigg)\bigg|_0^{\frac{\pi}{2}}}\\
+
\displaystyle{\int_0^{2\pi} (2-\cos x)-\cos x~dx} & {=} & \displaystyle{\int_0^{2\pi} 2-2\cos x~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{2\bigg(-\cos \bigg(\frac{\pi}{2}\bigg)-\frac{1}{\pi}\bigg(\frac{\pi}{2}\bigg)^2\bigg)}-2(-\cos(0))\\
+
& = & \displaystyle{(2x-2\sin x)\bigg|_0^{2\pi}}\\
 
&&\\
 
&&\\
& = & \displaystyle{2\bigg(-\frac{\pi}{4}\bigg)+2}\\
+
& = & \displaystyle{(4\pi-2\sin(2\pi))-(0-2\sin(0))}\\
 
&&\\
 
&&\\
& = & \displaystyle{-\frac{\pi}{2}+2}.\\
+
& = & \displaystyle{4\pi.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 79: Line 89:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' &nbsp;<math>(0,0),\bigg(\frac{\pi}{2},1\bigg),\bigg(\frac{-\pi}{2},-1\bigg)</math>
+
|&nbsp; &nbsp;'''(a)''' &nbsp; &nbsp;<math>(0,1),(2\pi,1)</math>
 
|-
 
|-
|'''(b)''' &nbsp;<math>-\frac{\pi}{2}+2</math>  
+
|&nbsp; &nbsp;'''(b)''' &nbsp; &nbsp;<math>4\pi</math>  
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 09:20, 28 February 2017

Consider the area bounded by the following two functions:

  and  

(a) Sketch the graphs and find their points of intersection.

(b) Find the area bounded by the two functions.

Foundations:  
Recall:
1. You can find the intersection points of two functions, say  

       by setting    and solving for  

2. The area between two functions,    and    is given by  

       for    where    is the upper function and    is the lower function.


Solution:

(a)

Step 1:  
First, we graph these two functions.
Insert graph here
Step 2:  
Setting    we get  
Therefore, we have
       
In the interval the solutions to this equation are
        and
Plugging these values into our equations,
we get the intersection points   and
You can see these intersection points on the graph shown in Step 1.

(b)

Step 1:  
The area bounded by the two functions is given by

       

Step 2:  
Lastly, we integrate to get

       


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam