Difference between revisions of "009B Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' You can find the intersection points of two functions, say <math style="vertical-align: -5px">f(x),g(x),</math>
+
|'''1.''' You can find the intersection points of two functions, say &nbsp;<math style="vertical-align: -5px">f(x),g(x),</math>
 
|-
 
|-
 
|
 
|
::by setting <math style="vertical-align: -5px">f(x)=g(x)</math> and solving for <math style="vertical-align: 0px">x</math>.
+
&nbsp; &nbsp; &nbsp; &nbsp;by setting &nbsp;<math style="vertical-align: -5px">f(x)=g(x)</math>&nbsp; and solving for &nbsp;<math style="vertical-align: 0px">x.</math>
 
|-
 
|-
|'''2.''' The area between two functions, <math style="vertical-align: -5px">f(x)</math> and <math style="vertical-align: -5px">g(x)</math>, is given by <math>\int_a^b f(x)-g(x)~dx</math>  
+
|'''2.''' The area between two functions, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g(x),</math>&nbsp; is given by &nbsp;<math>\int_a^b f(x)-g(x)~dx</math>  
 
|-
 
|-
 
|
 
|
::for <math style="vertical-align: -3px">a\leq x\leq b</math>, where <math style="vertical-align: -5px">f(x)</math> is the upper function and <math style="vertical-align: -5px">g(x)</math> is the lower function.  
+
&nbsp; &nbsp; &nbsp; &nbsp;for &nbsp;<math style="vertical-align: -3px">a\leq x\leq b,</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is the upper function and &nbsp;<math style="vertical-align: -5px">g(x)</math>&nbsp; is the lower function.  
 
|}
 
|}
  

Revision as of 08:58, 28 February 2017

Consider the area bounded by the following two functions:

  and  

(a) Sketch the graphs and find their points of intersection.

(b) Find the area bounded by the two functions.

Foundations:  
Recall:
1. You can find the intersection points of two functions, say  

       by setting    and solving for  

2. The area between two functions,    and    is given by  

       for    where    is the upper function and    is the lower function.


Solution:

(a)

Step 1:  
First, we graph these two functions.
Insert graph here
Step 2:  
Setting , we get three solutions:
So, the three intersection points are .
You can see these intersection points on the graph shown in Step 1.

(b)

Step 1:  
Using symmetry of the graph, the area bounded by the two functions is given by
Step 2:  
Lastly, we integrate to get


Final Answer:  
(a)  
(b)  

Return to Sample Exam