Difference between revisions of "009A Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
::<math>y=x^3.</math>
 
::<math>y=x^3.</math>
  
<span class="exam">(a) Find the differential <math style="vertical-align: -4px">dy</math> of <math style="vertical-align: -4px">y=x^3</math> at <math style="vertical-align: 0px">x=2</math>.
+
<span class="exam">(a) Find the differential &nbsp;<math style="vertical-align: -4px">dy</math>&nbsp; of &nbsp;<math style="vertical-align: -4px">y=x^3</math>&nbsp; at &nbsp;<math style="vertical-align: 0px">x=2</math>.
  
<span class="exam">(b) Use differentials to find an approximate value for <math style="vertical-align: -2px">1.9^3</math>.
+
<span class="exam">(b) Use differentials to find an approximate value for &nbsp;<math style="vertical-align: -2px">1.9^3</math>.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|What is the differential  <math style="vertical-align: -4px">dy</math>&nbsp; of <math style="vertical-align: -4px">y=x^2</math> at <math style="vertical-align: -1px">x=1?</math>
+
|What is the differential  &nbsp;<math style="vertical-align: -4px">dy</math>&nbsp; of &nbsp;<math style="vertical-align: -4px">y=x^2</math>&nbsp; at &nbsp;<math style="vertical-align: -1px">x=1?</math>
 
|-
 
|-
 
|
 
|
Line 24: Line 24:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we find the differential &nbsp; <math style="vertical-align: -4px">dy.</math>
+
|First, we find the differential &nbsp;<math style="vertical-align: -4px">dy.</math>
 
|-
 
|-
|Since <math style="vertical-align: -5px">y=x^3,</math>&nbsp; we have
+
|Since &nbsp;<math style="vertical-align: -5px">y=x^3,</math>&nbsp; we have
 
|-
 
|-
 
|
 
|
Line 35: Line 35:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we plug <math style="vertical-align: 0px">x=2</math>&nbsp; into the differential from Step 1.
+
|Now, we plug &nbsp;<math style="vertical-align: 0px">x=2</math>&nbsp; into the differential from Step 1.
 
|-
 
|-
 
|So, we get  
 
|So, we get  
Line 48: Line 48:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we find <math style="vertical-align: 0px">dx.</math>&nbsp;  We have &nbsp;<math style="vertical-align: -1px">dx=1.9-2=-0.1.</math>
+
|First, we find &nbsp;<math style="vertical-align: 0px">dx.</math>&nbsp;  We have &nbsp;<math style="vertical-align: -1px">dx=1.9-2=-0.1.</math>
 
|-
 
|-
 
|Then, we plug this into the differential from part (a).
 
|Then, we plug this into the differential from part (a).
Line 61: Line 61:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we add the value for <math style="vertical-align: -4px">dy</math>&nbsp; to &nbsp;<math style="vertical-align: 0px">2^3</math>&nbsp; to get an
+
|Now, we add the value for &nbsp;<math style="vertical-align: -4px">dy</math>&nbsp; to &nbsp;<math style="vertical-align: 0px">2^3</math>&nbsp; to get an
 
|-
 
|-
|approximate value of <math style="vertical-align: -1px">1.9^3.</math>
+
|approximate value of &nbsp;<math style="vertical-align: -1px">1.9^3.</math>
 
|-
 
|-
 
|Hence, we have  
 
|Hence, we have  

Revision as of 08:32, 27 February 2017

Let

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x^3.}

(a) Find the differential  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy}   of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x^3}   at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=2} .

(b) Use differentials to find an approximate value for  .

Foundations:  
What is the differential  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy}   of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x^2}   at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1?}

        Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1,}   the differential is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy=2xdx=2dx.}


Solution:

(a)

Step 1:  
First, we find the differential  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy.}
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x^3,}   we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy\,=\,3x^2\,dx.}

Step 2:  
Now, we plug  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=2}   into the differential from Step 1.
So, we get

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy\,=\,3(2)^2\,dx\,=\,12\,dx.}

(b)

Step 1:  
First, we find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx.}   We have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx=1.9-2=-0.1.}
Then, we plug this into the differential from part (a).
So, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy\,=\,12(-0.1)\,=\,-1.2.}

Step 2:  
Now, we add the value for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy}   to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^3}   to get an
approximate value of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.9^3.}
Hence, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.9^3\,\approx \, 2^3+-1.2\,=\,6.8.}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy=12\,dx}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6.8}

Return to Sample Exam