Difference between revisions of "009A Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
::<math>x^3+y^3=6xy.</math>
 
::<math>x^3+y^3=6xy.</math>
  
<span class="exam">(a) Using implicit differentiation, compute &thinsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>.
+
<span class="exam">(a) Using implicit differentiation, compute &nbsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>.
  
<span class="exam">(b) Find an equation of the tangent line to the curve <math style="vertical-align: -4px">x^3+y^3=6xy</math> at the point <math style="vertical-align: -5px">(3,3)</math>.
+
<span class="exam">(b) Find an equation of the tangent line to the curve &nbsp;<math style="vertical-align: -4px">x^3+y^3=6xy</math>&nbsp; at the point &nbsp;<math style="vertical-align: -5px">(3,3)</math>.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|'''1.''' What is the result of implicit differentiation of <math style="vertical-align: -4px">xy?</math>
+
|'''1.''' What is the result of implicit differentiation of &nbsp;<math style="vertical-align: -4px">xy?</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; It would be&thinsp; <math style="vertical-align: -13px">y+x\frac{dy}{dx}</math>&thinsp; by the Product Rule.
+
&nbsp; &nbsp; &nbsp; &nbsp; It would be &nbsp;<math style="vertical-align: -13px">y+x\frac{dy}{dx}</math>&nbsp; by the Product Rule.
 
|-
 
|-
 
|'''2.''' What two pieces of information do you need to write the equation of a line?
 
|'''2.''' What two pieces of information do you need to write the equation of a line?
Line 23: Line 23:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; The slope is&thinsp; <math style="vertical-align: -13px">m=\frac{dy}{dx}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; The slope is &nbsp;<math style="vertical-align: -13px">m=\frac{dy}{dx}.</math>
 
|}
 
|}
  
Line 34: Line 34:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Using implicit differentiation on the equation&nbsp; <math style="vertical-align: -4px">x^3+y^3=6xy,</math> &nbsp; we get
+
|Using implicit differentiation on the equation &nbsp;<math style="vertical-align: -4px">x^3+y^3=6xy,</math>&nbsp; we get
 
|-
 
|-
 
|
 
|
Line 60: Line 60:
 
|First, we find the slope of the tangent line at the point &nbsp;<math style="vertical-align: -5px">(3,3).</math>
 
|First, we find the slope of the tangent line at the point &nbsp;<math style="vertical-align: -5px">(3,3).</math>
 
|-
 
|-
|We plug  <math style="vertical-align: -5px">(3,3)</math>&thinsp; into the formula for &nbsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>&nbsp; we found in part (a).
+
|We plug  &nbsp;<math style="vertical-align: -5px">(3,3)</math>&nbsp; into the formula for &nbsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>&nbsp; we found in part (a).
 
|-
 
|-
 
|So, we get
 
|So, we get
Line 71: Line 71:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we have the slope of the tangent line at <math style="vertical-align: -5px">(3,3)</math>&nbsp; and a point.  
+
|Now, we have the slope of the tangent line at &nbsp;<math style="vertical-align: -5px">(3,3)</math>&nbsp; and a point.  
 
|-
 
|-
 
|Thus, we can write the equation of the line.
 
|Thus, we can write the equation of the line.
 
|-
 
|-
|So, the equation of the tangent line at <math style="vertical-align: -5px">(3,3)</math>&nbsp; is  
+
|So, the equation of the tangent line at &nbsp;<math style="vertical-align: -5px">(3,3)</math>&nbsp; is  
 
|-
 
|-
 
|
 
|

Revision as of 09:29, 27 February 2017

A curve is defined implicitly by the equation

(a) Using implicit differentiation, compute  .

(b) Find an equation of the tangent line to the curve    at the point  .

Foundations:  
1. What is the result of implicit differentiation of  

        It would be    by the Product Rule.

2. What two pieces of information do you need to write the equation of a line?

        You need the slope of the line and a point on the line.

3. What is the slope of the tangent line of a curve?

        The slope is  


Solution:

(a)

Step 1:  
Using implicit differentiation on the equation    we get

       

Step 2:  
Now, we move all the    terms to one side of the equation.
So, we have

       

We solve to get  

(b)

Step 1:  
First, we find the slope of the tangent line at the point  
We plug    into the formula for    we found in part (a).
So, we get

       

Step 2:  
Now, we have the slope of the tangent line at    and a point.
Thus, we can write the equation of the line.
So, the equation of the tangent line at    is

       


Final Answer:  
    (a)   
    (b)   

Return to Sample Exam