Difference between revisions of "009C Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">If <math>\sum_{n=0}^\infty c_nx^n</math> converges, does it follow that the following series converges?
+
<span class="exam">If &nbsp;<math>\sum_{n=0}^\infty c_nx^n</math>&nbsp; converges, does it follow that the following series converges?
  
<span class="exam">(a) <math>\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n</math>
+
<span class="exam">(a) &nbsp;<math>\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n</math>
  
<span class="exam">(b) <math>\sum_{n=0}^\infty c_n(-x)^n </math>
+
<span class="exam">(b) &nbsp;<math>\sum_{n=0}^\infty c_n(-x)^n </math>
  
  
Line 10: Line 10:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|A geometric series <math>\sum_{n=0}^{\infty} ar^n</math> converges if <math style="vertical-align: -6px">|r|<1.</math>
+
|A geometric series &nbsp;<math>\sum_{n=0}^{\infty} ar^n</math>&nbsp; converges if &nbsp;<math style="vertical-align: -6px">|r|<1.</math>
 
|}
 
|}
  
Line 20: Line 20:
 
!Step 1: &nbsp;
 
!Step 1: &nbsp;
 
|-
 
|-
|First, we notice that <math>\sum_{n=0}^\infty c_nx^n</math> is a geometric series.
+
|First, we notice that &nbsp;<math>\sum_{n=0}^\infty c_nx^n</math>&nbsp; is a geometric series.
 
|-
 
|-
|We have <math style="vertical-align: -1px">r=x.</math>
+
|We have &nbsp;<math style="vertical-align: -1px">r=x.</math>
 
|-
 
|-
 
|Since this series converges,
 
|Since this series converges,
Line 32: Line 32:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|The series <math>\sum_{n=0} c_n\bigg(\frac{x}{2}\bigg)^n</math> is also a geometric series.
+
|The series &nbsp;<math>\sum_{n=0} c_n\bigg(\frac{x}{2}\bigg)^n</math>&nbsp; is also a geometric series.
 
|-
 
|-
|For this series, <math style="vertical-align: -13px">r=\frac{x}{2}.</math>
+
|For this series, &nbsp;<math style="vertical-align: -13px">r=\frac{x}{2}.</math>
 
|-
 
|-
 
|Now, we notice
 
|Now, we notice
Line 47: Line 47:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|since <math style="vertical-align: -5px">|x|<1.</math>  
+
|since &nbsp;<math style="vertical-align: -5px">|x|<1.</math>  
 
|-
 
|-
| Since <math style="vertical-align: -5px">|r|<1,</math> this series converges.
+
| Since &nbsp;<math style="vertical-align: -5px">|r|<1,</math>&nbsp; this series converges.
 
|}
 
|}
  
Line 56: Line 56:
 
!Step 1: &nbsp;
 
!Step 1: &nbsp;
 
|-
 
|-
|First, we notice that <math>\sum_{n=0}^\infty c_nx^n</math> is a geometric series.
+
|First, we notice that &nbsp;<math>\sum_{n=0}^\infty c_nx^n</math>&nbsp; is a geometric series.
 
|-
 
|-
|We have <math style="vertical-align: -1px">r=x.</math>
+
|We have &nbsp;<math style="vertical-align: -1px">r=x.</math>
 
|-
 
|-
 
|Since this series converges,
 
|Since this series converges,
Line 68: Line 68:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|The series <math>\sum_{n=0}^\infty c_n(-x)^n</math> is also a geometric series.
+
|The series &nbsp;<math>\sum_{n=0}^\infty c_n(-x)^n</math>&nbsp; is also a geometric series.
 
|-
 
|-
|For this series, <math style="vertical-align: -1px">r=-x.</math>
+
|For this series, &nbsp;<math style="vertical-align: -1px">r=-x.</math>
 
|-
 
|-
 
|Now, we notice
 
|Now, we notice
Line 83: Line 83:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|since <math style="vertical-align: -5px">|x|<1.</math>  
+
|since &nbsp;<math style="vertical-align: -5px">|x|<1.</math>  
 
|-
 
|-
|Since <math style="vertical-align: -5px">|r|<1,</math> this series converges.
+
|Since &nbsp;<math style="vertical-align: -5px">|r|<1,</math>&nbsp; this series converges.
 
|}
 
|}
  

Revision as of 19:14, 26 February 2017

If    converges, does it follow that the following series converges?

(a)  

(b)  


Foundations:  
A geometric series    converges if  


Solution:

(a)

Step 1:  
First, we notice that    is a geometric series.
We have  
Since this series converges,
       
Step 2:  
The series    is also a geometric series.
For this series,  
Now, we notice

       

since  
Since    this series converges.

(b)

Step 1:  
First, we notice that    is a geometric series.
We have  
Since this series converges,
       
Step 2:  
The series    is also a geometric series.
For this series,  
Now, we notice

       

since  
Since    this series converges.


Final Answer:  
    (a)     The series converges.
    (b)     The series converges.

Return to Sample Exam