Difference between revisions of "009C Sample Midterm 2, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam">Determine convergence or divergence: | <span class="exam">Determine convergence or divergence: | ||
− | <span class="exam">(a) <math>\sum_{n=1}^\infty (-1)^n \sqrt{\frac{1}{n}}</math> | + | <span class="exam">(a) <math>\sum_{n=1}^\infty (-1)^n \sqrt{\frac{1}{n}}</math> |
− | <span class="exam">(b) <math>\sum_{n=1}^\infty (-2)^n \frac{n!}{n^n} </math> | + | <span class="exam">(b) <math>\sum_{n=1}^\infty (-2)^n \frac{n!}{n^n} </math> |
Line 11: | Line 11: | ||
|'''1.''' '''Alternating Series Test''' | |'''1.''' '''Alternating Series Test''' | ||
|- | |- | ||
− | | Let <math>\{a_n\}</math> be a positive, decreasing sequence where <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math> | + | | Let <math>\{a_n\}</math> be a positive, decreasing sequence where <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math> |
|- | |- | ||
− | | Then, <math>\sum_{n=1}^\infty (-1)^na_n</math> and <math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math> | + | | Then, <math>\sum_{n=1}^\infty (-1)^na_n</math> and <math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math> |
|- | |- | ||
| converge. | | converge. | ||
Line 19: | Line 19: | ||
|'''2.''' '''Ratio Test''' | |'''2.''' '''Ratio Test''' | ||
|- | |- | ||
− | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> | + | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> |
|- | |- | ||
| Then, | | Then, | ||
|- | |- | ||
| | | | ||
− | If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent. | + | If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent. |
|- | |- | ||
| | | | ||
− | If <math style="vertical-align: -4px">L>1,</math> the series is divergent. | + | If <math style="vertical-align: -4px">L>1,</math> the series is divergent. |
|- | |- | ||
| | | | ||
− | If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive. | + | If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive. |
|- | |- | ||
|'''3.''' If a series absolutely converges, then it also converges. | |'''3.''' If a series absolutely converges, then it also converges. | ||
Line 54: | Line 54: | ||
|We notice that the series is alternating. | |We notice that the series is alternating. | ||
|- | |- | ||
− | |Let <math> b_n=\frac{1}{\sqrt{n}}.</math> | + | |Let <math> b_n=\frac{1}{\sqrt{n}}.</math> |
|- | |- | ||
− | |The sequence <math>\{b_n\}</math> is decreasing since | + | |The sequence <math>\{b_n\}</math> is decreasing since |
|- | |- | ||
| <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math> | | <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math> | ||
|- | |- | ||
− | |for all <math style="vertical-align: -3px">n\ge 1.</math> | + | |for all <math style="vertical-align: -3px">n\ge 1.</math> |
|- | |- | ||
|Also, | |Also, | ||
Line 66: | Line 66: | ||
| <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{\sqrt{n}}=0.</math> | | <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{\sqrt{n}}=0.</math> | ||
|- | |- | ||
− | |Therefore, the series <math>\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}</math> converges by the Alternating Series Test. | + | |Therefore, the series <math>\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}</math> converges by the Alternating Series Test. |
|} | |} | ||
Line 92: | Line 92: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we need to calculate <math style="vertical-align: -15px">\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math> | + | |Now, we need to calculate <math style="vertical-align: -15px">\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math> |
|- | |- | ||
− | |Let <math style="vertical-align: -15px">y=\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math> | + | |Let <math style="vertical-align: -15px">y=\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math> |
|- | |- | ||
|Then, taking the natural log of both sides, we get | |Then, taking the natural log of both sides, we get | ||
Line 111: | Line 111: | ||
|since we can interchange limits and continuous functions. | |since we can interchange limits and continuous functions. | ||
|- | |- | ||
− | |Now, this limit has the form <math style="vertical-align: -13px">\frac{0}{0}.</math> | + | |Now, this limit has the form <math style="vertical-align: -13px">\frac{0}{0}.</math> |
|- | |- | ||
|Hence, we can use L'Hopital's Rule to calculate this limit. | |Hence, we can use L'Hopital's Rule to calculate this limit. | ||
Line 138: | Line 138: | ||
!Step 4: | !Step 4: | ||
|- | |- | ||
− | |Since <math>\ln y=-1,</math> we know | + | |Since <math>\ln y=-1,</math> we know |
|- | |- | ||
| <math>y=e^{-1}.</math> | | <math>y=e^{-1}.</math> | ||
Line 146: | Line 146: | ||
| <math>\lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|=2e^{-1}=\frac{2}{e}.</math> | | <math>\lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|=2e^{-1}=\frac{2}{e}.</math> | ||
|- | |- | ||
− | |Since <math style="vertical-align: -13px">\frac{2}{e}<1,</math> the series is absolutely convergent by the Ratio Test. | + | |Since <math style="vertical-align: -13px">\frac{2}{e}<1,</math> the series is absolutely convergent by the Ratio Test. |
|- | |- | ||
|Therefore, the series converges. | |Therefore, the series converges. |
Revision as of 19:08, 26 February 2017
Determine convergence or divergence:
(a)
(b)
Foundations: |
---|
1. Alternating Series Test |
Let be a positive, decreasing sequence where |
Then, and |
converge. |
2. Ratio Test |
Let be a series and |
Then, |
If the series is absolutely convergent. |
If the series is divergent. |
If the test is inconclusive. |
3. If a series absolutely converges, then it also converges. |
Solution:
(a)
Step 1: |
---|
First, we have |
Step 2: |
---|
We notice that the series is alternating. |
Let |
The sequence is decreasing since |
for all |
Also, |
Therefore, the series converges by the Alternating Series Test. |
(b)
Step 1: |
---|
We begin by using the Ratio Test. |
We have |
|
Step 2: |
---|
Now, we need to calculate |
Let |
Then, taking the natural log of both sides, we get |
|
since we can interchange limits and continuous functions. |
Now, this limit has the form |
Hence, we can use L'Hopital's Rule to calculate this limit. |
Step 3: |
---|
Now, we have |
|
Step 4: |
---|
Since we know |
Now, we have |
Since the series is absolutely convergent by the Ratio Test. |
Therefore, the series converges. |
Final Answer: |
---|
(a) converges |
(b) converges |