Difference between revisions of "009C Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Determine convergence or divergence:
 
<span class="exam">Determine convergence or divergence:
  
<span class="exam">(a) <math>\sum_{n=1}^\infty (-1)^n \sqrt{\frac{1}{n}}</math>
+
<span class="exam">(a) &nbsp;<math>\sum_{n=1}^\infty (-1)^n \sqrt{\frac{1}{n}}</math>
  
<span class="exam">(b) <math>\sum_{n=1}^\infty (-2)^n \frac{n!}{n^n} </math>
+
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^\infty (-2)^n \frac{n!}{n^n} </math>
  
  
Line 11: Line 11:
 
|'''1.''' '''Alternating Series Test'''
 
|'''1.''' '''Alternating Series Test'''
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math>\{a_n\}</math> be a positive, decreasing sequence where <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; be a positive, decreasing sequence where &nbsp;<math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math>\sum_{n=1}^\infty (-1)^na_n</math> and <math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math>\sum_{n=1}^\infty (-1)^na_n</math>&nbsp; and &nbsp;<math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math>  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; converge.
 
|&nbsp; &nbsp; &nbsp; &nbsp; converge.
Line 19: Line 19:
 
|'''2.''' '''Ratio Test'''  
 
|'''2.''' '''Ratio Test'''  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -7px">\sum a_n</math>&nbsp; be a series and &nbsp;<math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent.  
+
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L<1,</math>&nbsp; the series is absolutely convergent.  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L>1,</math> the series is divergent.
+
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L>1,</math>&nbsp; the series is divergent.
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive.
+
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L=1,</math>&nbsp; the test is inconclusive.
 
|-
 
|-
 
|'''3.''' If a series absolutely converges, then it also converges.  
 
|'''3.''' If a series absolutely converges, then it also converges.  
Line 54: Line 54:
 
|We notice that the series is alternating.
 
|We notice that the series is alternating.
 
|-
 
|-
|Let <math> b_n=\frac{1}{\sqrt{n}}.</math>
+
|Let &nbsp;<math> b_n=\frac{1}{\sqrt{n}}.</math>
 
|-
 
|-
|The sequence <math>\{b_n\}</math> is decreasing since
+
|The sequence &nbsp;<math>\{b_n\}</math>&nbsp; is decreasing since
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math>
 
|-
 
|-
|for all <math style="vertical-align: -3px">n\ge 1.</math>
+
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|-
 
|Also,  
 
|Also,  
Line 66: Line 66:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{\sqrt{n}}=0.</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{\sqrt{n}}=0.</math>  
 
|-
 
|-
|Therefore, the series <math>\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}</math> converges by the Alternating Series Test.
+
|Therefore, the series &nbsp;<math>\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}</math>&nbsp; converges by the Alternating Series Test.
 
|}
 
|}
  
Line 92: Line 92:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we need to calculate <math style="vertical-align: -15px">\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math>
+
|Now, we need to calculate &nbsp;<math style="vertical-align: -15px">\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math>
 
|-
 
|-
|Let <math style="vertical-align: -15px">y=\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math>
+
|Let &nbsp;<math style="vertical-align: -15px">y=\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math>
 
|-
 
|-
 
|Then, taking the natural log of both sides, we get
 
|Then, taking the natural log of both sides, we get
Line 111: Line 111:
 
|since we can interchange limits and continuous functions.
 
|since we can interchange limits and continuous functions.
 
|-
 
|-
|Now, this limit has the form <math style="vertical-align: -13px">\frac{0}{0}.</math>
+
|Now, this limit has the form &nbsp;<math style="vertical-align: -13px">\frac{0}{0}.</math>
 
|-
 
|-
 
|Hence, we can use L'Hopital's Rule to calculate this limit.
 
|Hence, we can use L'Hopital's Rule to calculate this limit.
Line 138: Line 138:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|Since <math>\ln y=-1,</math> we know
+
|Since &nbsp;<math>\ln y=-1,</math>&nbsp; we know
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e^{-1}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e^{-1}.</math>
Line 146: Line 146:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|=2e^{-1}=\frac{2}{e}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|=2e^{-1}=\frac{2}{e}.</math>
 
|-
 
|-
|Since <math style="vertical-align: -13px">\frac{2}{e}<1,</math> the series is absolutely convergent by the Ratio Test.
+
|Since &nbsp;<math style="vertical-align: -13px">\frac{2}{e}<1,</math>&nbsp; the series is absolutely convergent by the Ratio Test.
 
|-
 
|-
 
|Therefore, the series converges.
 
|Therefore, the series converges.

Revision as of 19:08, 26 February 2017

Determine convergence or divergence:

(a)  

(b)  


Foundations:  
1. Alternating Series Test
        Let    be a positive, decreasing sequence where  
        Then,    and  
        converge.
2. Ratio Test
        Let    be a series and  
        Then,

        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.

3. If a series absolutely converges, then it also converges.


Solution:

(a)

Step 1:  
First, we have
       
Step 2:  
We notice that the series is alternating.
Let  
The sequence    is decreasing since
       
for all  
Also,
       
Therefore, the series    converges by the Alternating Series Test.

(b)

Step 1:  
We begin by using the Ratio Test.
We have

       

Step 2:  
Now, we need to calculate  
Let  
Then, taking the natural log of both sides, we get

       

since we can interchange limits and continuous functions.
Now, this limit has the form  
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since    we know
       
Now, we have
       
Since    the series is absolutely convergent by the Ratio Test.
Therefore, the series converges.


Final Answer:  
    (a)     converges
    (b)     converges

Return to Sample Exam