Difference between revisions of "009C Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
|'''1.''' '''Direct Comparison Test'''
 
|'''1.''' '''Direct Comparison Test'''
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math>\{a_n\}</math> and <math>\{b_n\}</math> be positive sequences where <math style="vertical-align: -3px">a_n\le b_n</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; and &nbsp;<math>\{b_n\}</math>&nbsp; be positive sequences where &nbsp;<math style="vertical-align: -3px">a_n\le b_n</math>  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; for all <math style="vertical-align: -3px">n\ge N</math> for some <math style="vertical-align: -3px">N\ge 1.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; for all &nbsp;<math style="vertical-align: -3px">n\ge N</math>&nbsp; for some &nbsp;<math style="vertical-align: -3px">N\ge 1.</math>
 
|-
 
|-
|'''2.''' If <math>\sum_{n=1}^\infty b_n</math> converges, then <math>\sum_{n=1}^\infty a_n</math> converges.
+
|'''2.''' If &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; converges, then &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; converges.
 
|-
 
|-
|'''3.''' If <math>\sum_{n=1}^\infty a_n</math> diverges, then <math>\sum_{n=1}^\infty b_n</math> diverges.
+
|'''3.''' If &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; diverges, then &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; diverges.
 
|}
 
|}
  
Line 29: Line 29:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{3^n}{n}>0</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{3^n}{n}>0</math>
 
|-
 
|-
|for all <math style="vertical-align: -3px">n\ge 1.</math>
+
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|-
 
|This means that we can use a comparison test on this series.
 
|This means that we can use a comparison test on this series.
 
|-
 
|-
|Let <math style="vertical-align: -13px">a_n=\frac{3^n}{n}.</math>
+
|Let &nbsp;<math style="vertical-align: -13px">a_n=\frac{3^n}{n}.</math>
 
|}
 
|}
  
Line 39: Line 39:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Let <math style="vertical-align: -14px">b_n=\frac{1}{n}.</math>
+
|Let &nbsp;<math style="vertical-align: -14px">b_n=\frac{1}{n}.</math>
 
|-
 
|-
 
|We want to compare the series in this problem with
 
|We want to compare the series in this problem with
Line 45: Line 45:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty \frac{1}{n}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty \frac{1}{n}.</math>
 
|-
 
|-
|This is the harmonic series (or <math style="vertical-align: -4px">p</math>-series with <math style="vertical-align: -4px">p=1.</math>)
+
|This is the harmonic series (or &nbsp;<math style="vertical-align: -4px">p</math>-series with &nbsp;<math style="vertical-align: -4px">p=1.</math>&nbsp;)
 
|-
 
|-
|Hence, <math>\sum_{n=1}^\infty b_n</math> diverges.
+
|Hence, &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; diverges.
 
|}
 
|}
  
Line 53: Line 53:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Also, we have <math style="vertical-align: -4px">b_n<a_n</math> since
+
|Also, we have &nbsp;<math style="vertical-align: -4px">b_n<a_n</math>&nbsp; since
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n}<\frac{3^n}{n}</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n}<\frac{3^n}{n}</math>
 
|-
 
|-
| for all <math style="vertical-align: -3px">n\ge 1.</math>
+
| for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|-
|Therefore, the series <math>\sum_{n=1}^\infty a_n</math> diverges
+
|Therefore, the series &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; diverges
 
|-
 
|-
 
|by the Direct Comparison Test.
 
|by the Direct Comparison Test.

Revision as of 19:05, 26 February 2017

Determine convergence or divergence:


Foundations:  
1. Direct Comparison Test
        Let    and    be positive sequences where  
        for all    for some  
2. If    converges, then    converges.
3. If    diverges, then    diverges.


Solution:

Step 1:  
First, we note that
       
for all  
This means that we can use a comparison test on this series.
Let  
Step 2:  
Let  
We want to compare the series in this problem with
       
This is the harmonic series (or  -series with   )
Hence,    diverges.
Step 3:  
Also, we have    since
       
for all  
Therefore, the series    diverges
by the Direct Comparison Test.


Final Answer:  
        diverges

Return to Sample Exam