Difference between revisions of "009C Sample Midterm 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Evaluate:
 
<span class="exam">Evaluate:
  
<span class="exam">(a) <math>\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}</math>
+
<span class="exam">(a) &nbsp;<math>\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}</math>
  
<span class="exam">(b) <math>\sum_{n=1}^\infty \frac{1}{2} \bigg(\frac{1}{4}\bigg)^{n-1} </math>
+
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^\infty \frac{1}{2} \bigg(\frac{1}{4}\bigg)^{n-1} </math>
  
  
Line 12: Line 12:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&thinsp; and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&thinsp; are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&nbsp; are both zero or both &nbsp;<math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&thinsp; is finite or&thinsp; <math style="vertical-align: -4px">\pm \infty ,</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&nbsp; is finite or &nbsp;<math style="vertical-align: -4px">\pm \infty ,</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|-
 
|-
 
|'''2.''' The sum of a convergent geometric series is &nbsp; <math>\frac{a}{1-r}</math>
 
|'''2.''' The sum of a convergent geometric series is &nbsp; <math>\frac{a}{1-r}</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; where <math style="vertical-align: 0px">r</math> is the ratio of the geometric series  
+
|&nbsp; &nbsp; &nbsp; &nbsp; where &nbsp;<math style="vertical-align: 0px">r</math>&nbsp; is the ratio of the geometric series  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; and <math style="vertical-align: 0px">a</math> is the first term of the series.
+
|&nbsp; &nbsp; &nbsp; &nbsp; and &nbsp;<math style="vertical-align: 0px">a</math>&nbsp; is the first term of the series.
 
|}
 
|}
  
Line 62: Line 62:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Now, this limit has the form <math style="vertical-align: -13px">\frac{0}{0}.</math>
+
|Now, this limit has the form &nbsp;<math style="vertical-align: -13px">\frac{0}{0}.</math>
 
|-
 
|-
 
|Hence, we can use L'Hopital's Rule to calculate this limit.
 
|Hence, we can use L'Hopital's Rule to calculate this limit.
Line 89: Line 89:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|Since <math>\ln y= -4,</math> we know
+
|Since &nbsp;<math>\ln y= -4,</math> we know
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e^{-4}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e^{-4}.</math>
Line 109: Line 109:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we not that this is a geometric series with <math style="vertical-align: -14px">r=\frac{1}{4}.</math>
+
|First, we not that this is a geometric series with &nbsp;<math style="vertical-align: -14px">r=\frac{1}{4}.</math>
 
|-
 
|-
|Since <math style="vertical-align: -14px">|r|=\frac{1}{4}<1,</math>
+
|Since &nbsp;<math style="vertical-align: -14px">|r|=\frac{1}{4}<1,</math>
 
|-
 
|-
 
|this series converges.
 
|this series converges.
Line 121: Line 121:
 
|Now, we need to find the sum of this series.  
 
|Now, we need to find the sum of this series.  
 
|-
 
|-
|The first term of the series is <math style="vertical-align: -13px">a_1=\frac{1}{2}.</math>
+
|The first term of the series is &nbsp;<math style="vertical-align: -13px">a_1=\frac{1}{2}.</math>
 
|-
 
|-
 
|Hence, the sum of the series is  
 
|Hence, the sum of the series is  

Revision as of 19:02, 26 February 2017

Evaluate:

(a)  

(b)  


Foundations:  
1. L'Hôpital's Rule

        Suppose that    and    are both zero or both  

        If    is finite or  

        then  

2. The sum of a convergent geometric series is  
        where    is the ratio of the geometric series
        and    is the first term of the series.


Solution:

(a)

Step 1:  
Let

       

We then take the natural log of both sides to get
       
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form  
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since   we know
       
Now, we have

       

(b)

Step 1:  
First, we not that this is a geometric series with  
Since  
this series converges.
Step 2:  
Now, we need to find the sum of this series.
The first term of the series is  
Hence, the sum of the series is

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam