Difference between revisions of "009C Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam">Evaluate: | <span class="exam">Evaluate: | ||
− | <span class="exam">(a) <math>\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}</math> | + | <span class="exam">(a) <math>\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}</math> |
− | <span class="exam">(b) <math>\sum_{n=1}^\infty \frac{1}{2} \bigg(\frac{1}{4}\bigg)^{n-1} </math> | + | <span class="exam">(b) <math>\sum_{n=1}^\infty \frac{1}{2} \bigg(\frac{1}{4}\bigg)^{n-1} </math> |
Line 12: | Line 12: | ||
|- | |- | ||
| | | | ||
− | Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>& | + | Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math> and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math> |
|- | |- | ||
| | | | ||
− | If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>& | + | If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> is finite or <math style="vertical-align: -4px">\pm \infty ,</math> |
|- | |- | ||
| | | | ||
− | then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> | + | then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> |
|- | |- | ||
|'''2.''' The sum of a convergent geometric series is <math>\frac{a}{1-r}</math> | |'''2.''' The sum of a convergent geometric series is <math>\frac{a}{1-r}</math> | ||
|- | |- | ||
− | | where <math style="vertical-align: 0px">r</math> is the ratio of the geometric series | + | | where <math style="vertical-align: 0px">r</math> is the ratio of the geometric series |
|- | |- | ||
− | | and <math style="vertical-align: 0px">a</math> is the first term of the series. | + | | and <math style="vertical-align: 0px">a</math> is the first term of the series. |
|} | |} | ||
Line 62: | Line 62: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | |Now, this limit has the form <math style="vertical-align: -13px">\frac{0}{0}.</math> | + | |Now, this limit has the form <math style="vertical-align: -13px">\frac{0}{0}.</math> |
|- | |- | ||
|Hence, we can use L'Hopital's Rule to calculate this limit. | |Hence, we can use L'Hopital's Rule to calculate this limit. | ||
Line 89: | Line 89: | ||
!Step 4: | !Step 4: | ||
|- | |- | ||
− | |Since <math>\ln y= -4,</math> we know | + | |Since <math>\ln y= -4,</math> we know |
|- | |- | ||
| <math>y=e^{-4}.</math> | | <math>y=e^{-4}.</math> | ||
Line 109: | Line 109: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we not that this is a geometric series with <math style="vertical-align: -14px">r=\frac{1}{4}.</math> | + | |First, we not that this is a geometric series with <math style="vertical-align: -14px">r=\frac{1}{4}.</math> |
|- | |- | ||
− | |Since <math style="vertical-align: -14px">|r|=\frac{1}{4}<1,</math> | + | |Since <math style="vertical-align: -14px">|r|=\frac{1}{4}<1,</math> |
|- | |- | ||
|this series converges. | |this series converges. | ||
Line 121: | Line 121: | ||
|Now, we need to find the sum of this series. | |Now, we need to find the sum of this series. | ||
|- | |- | ||
− | |The first term of the series is <math style="vertical-align: -13px">a_1=\frac{1}{2}.</math> | + | |The first term of the series is <math style="vertical-align: -13px">a_1=\frac{1}{2}.</math> |
|- | |- | ||
|Hence, the sum of the series is | |Hence, the sum of the series is |
Revision as of 19:02, 26 February 2017
Evaluate:
(a)
(b)
Foundations: |
---|
1. L'Hôpital's Rule |
Suppose that and are both zero or both |
If is finite or |
then |
2. The sum of a convergent geometric series is |
where is the ratio of the geometric series |
and is the first term of the series. |
Solution:
(a)
Step 1: |
---|
Let
|
We then take the natural log of both sides to get |
Step 2: |
---|
We can interchange limits and continuous functions. |
Therefore, we have |
|
Now, this limit has the form |
Hence, we can use L'Hopital's Rule to calculate this limit. |
Step 3: |
---|
Now, we have |
|
Step 4: |
---|
Since we know |
Now, we have |
|
(b)
Step 1: |
---|
First, we not that this is a geometric series with |
Since |
this series converges. |
Step 2: |
---|
Now, we need to find the sum of this series. |
The first term of the series is |
Hence, the sum of the series is |
|
Final Answer: |
---|
(a) |
(b) |