Difference between revisions of "009C Sample Midterm 1, Problem 2"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | <span class="exam">Consider the infinite series <math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math> | + | <span class="exam">Consider the infinite series <math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math> |
− | <span class="exam">(a) Find an expression for the <math style="vertical-align: 0px">n</math>th partial sum <math style="vertical-align: -3px">s_n</math> of the series. | + | <span class="exam">(a) Find an expression for the <math style="vertical-align: 0px">n</math>th partial sum <math style="vertical-align: -3px">s_n</math> of the series. |
− | <span class="exam">(b) Compute <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math> | + | <span class="exam">(b) Compute <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math> |
Line 9: | Line 9: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |The <math style="vertical-align: 0px">n</math>th partial sum, <math style="vertical-align: -3px">s_n</math> for a series <math>\sum_{n=1}^\infty a_n </math> is defined as | + | |The <math style="vertical-align: 0px">n</math>th partial sum, <math style="vertical-align: -3px">s_n</math> for a series <math>\sum_{n=1}^\infty a_n </math> is defined as |
|- | |- | ||
| | | | ||
Line 24: | Line 24: | ||
|We need to find a pattern for the partial sums in order to find a formula. | |We need to find a pattern for the partial sums in order to find a formula. | ||
|- | |- | ||
− | |We start by calculating <math style="vertical-align: -3px">s_2</math> | + | |We start by calculating <math style="vertical-align: -3px">s_2.</math> We have |
|- | |- | ||
| <math>s_2=2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg).</math> | | <math>s_2=2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg).</math> | ||
Line 32: | Line 32: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Next, we calculate <math style="vertical-align: -3px">s_3</math> and <math style="vertical-align: -3px">s_4.</math> We have | + | |Next, we calculate <math style="vertical-align: -3px">s_3</math> and <math style="vertical-align: -3px">s_4.</math> We have |
|- | |- | ||
| <math>\begin{array}{rcl} | | <math>\begin{array}{rcl} | ||
Line 52: | Line 52: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
− | |If we look at <math style="vertical-align: -4px">s_2,s_3,</math> and <math style="vertical-align: -4px">s_4, </math> we notice a pattern. | + | |If we look at <math style="vertical-align: -4px">s_2,s_3,</math> and <math style="vertical-align: -4px">s_4, </math> we notice a pattern. |
|- | |- | ||
|From this pattern, we get the formula | |From this pattern, we get the formula | ||
Line 71: | Line 71: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |We now calculate <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math> | + | |We now calculate <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math> |
|- | |- | ||
|We get | |We get |
Revision as of 18:50, 26 February 2017
Consider the infinite series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).}
(a) Find an expression for the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} th partial sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_n} of the series.
(b) Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty} s_n.}
Foundations: |
---|
The Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} th partial sum, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_n} for a series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty a_n } is defined as |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_n=\sum_{i=1}^n a_i.} |
Solution:
(a)
Step 1: |
---|
We need to find a pattern for the partial sums in order to find a formula. |
We start by calculating Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_2.} We have |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_2=2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg).} |
Step 2: |
---|
Next, we calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_3} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_4.} We have |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{s_3} & = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg)+2\bigg(\frac{1}{2^3}-\frac{1}{2^4}\bigg)}\\ &&\\ & = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^4}\bigg)} \end{array}} |
and |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{s_4} & = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg)+2\bigg(\frac{1}{2^3}-\frac{1}{2^4}\bigg)+2\bigg(\frac{1}{2^4}-\frac{1}{2^5}\bigg)}\\ &&\\ & = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^5}\bigg).} \end{array}} |
Step 3: |
---|
If we look at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_2,s_3,} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_4, } we notice a pattern. |
From this pattern, we get the formula |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg).} |
(b)
Step 1: |
---|
From Part (a), we have |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg).} |
Step 2: |
---|
We now calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty} s_n.} |
We get |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{n\rightarrow \infty} s_n} & = & \displaystyle{\lim_{n\rightarrow \infty} 2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg)}\\ &&\\ & = & \displaystyle{\frac{2}{2^2}}\\ &&\\ & = & \displaystyle{\frac{1}{2}.} \end{array}} |
Final Answer: |
---|
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg)} |
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} |