Difference between revisions of "009C Sample Midterm 1"

From Grad Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by the same user not shown)
Line 11: Line 11:
 
<span class="exam"> Be sure to jusify your answers!  
 
<span class="exam"> Be sure to jusify your answers!  
  
::::::<math>a_n=\frac{\ln n}{n}</math>
+
::<math>a_n=\frac{\ln n}{n}</math>
  
 
== [[009C_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
== [[009C_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
<span class="exam"> Consider the infinite series <math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math>
+
<span class="exam"> Consider the infinite series &nbsp;<math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math>
  
::<span class="exam">a) Find an expression for the <math style="vertical-align: 0px">n</math>th partial sum <math style="vertical-align: -3px">s_n</math> of the series.
+
<span class="exam">(a) Find an expression for the &nbsp;<math style="vertical-align: 0px">n</math>th partial sum &nbsp;<math style="vertical-align: -3px">s_n</math>&nbsp; of the series.
::<span class="exam">b) Compute <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math>
+
 
 +
<span class="exam">(b) Compute &nbsp;<math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math>
  
 
== [[009C_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
== [[009C_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
<span class="exam"> Determine whether the following series converges absolutely, conditionally or whether it diverges.
+
<span class="exam"> Determine whether the following series converges absolutely,  
 +
 
 +
<span class="exam"> conditionally or whether it diverges.
  
 
<span class="exam"> Be sure to justify your answers!
 
<span class="exam"> Be sure to justify your answers!
  
::::::<math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math>
+
::<math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math>
  
 
== [[009C_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
== [[009C_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
Line 31: Line 34:
 
<span class="exam"> Be sure to justify your answers!
 
<span class="exam"> Be sure to justify your answers!
  
::::::<math>\sum_{n=1}^\infty \frac{1}{n^23^n}</math>
+
::<math>\sum_{n=1}^\infty \frac{1}{n^23^n}</math>
  
 
== [[009C_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
== [[009C_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
<span class="exam"> Find the radius of convergence and interval of convergence of the series.
 
<span class="exam"> Find the radius of convergence and interval of convergence of the series.
  
::<span class="exam">a) <math>\sum_{n=0}^\infty \sqrt{n}x^n</math>
+
<span class="exam">(a) &nbsp;<math>\sum_{n=0}^\infty \sqrt{n}x^n</math>
::<span class="exam">b) <math>\sum_{n=0}^\infty (-1)^n \frac{(x-3)^n}{2n+1}</math>
+
 
 +
<span class="exam">(b) &nbsp;<math>\sum_{n=0}^\infty (-1)^n \frac{(x-3)^n}{2n+1}</math>

Latest revision as of 18:45, 26 February 2017

This is a sample, and is meant to represent the material usually covered in Math 9C for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Does the following sequence converge or diverge?

If the sequence converges, also find the limit of the sequence.

Be sure to jusify your answers!

 Problem 2 

Consider the infinite series  

(a) Find an expression for the  th partial sum    of the series.

(b) Compute  

 Problem 3 

Determine whether the following series converges absolutely,

conditionally or whether it diverges.

Be sure to justify your answers!

 Problem 4 

Determine the convergence or divergence of the following series.

Be sure to justify your answers!

 Problem 5 

Find the radius of convergence and interval of convergence of the series.

(a)  

(b)