Difference between revisions of "009B Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' Recall the trig identity
+
|'''1.''' Recall the trig identity &nbsp;<math style="vertical-align: -3px">\tan^2x+1=\sec^2x</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -3px">\tan^2x+1=\sec^2x</math>
+
|'''2.''' Recall the trig identity &nbsp;<math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math>
 
|-
 
|-
|'''2.''' Recall the trig identity
+
|'''3.''' How would you integrate &nbsp;<math style="vertical-align: -1px">\tan x~dx?</math>
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math>
 
|-
 
|'''3.''' How would you integrate <math style="vertical-align: -1px">\tan x~dx?</math>
 
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.  
+
&nbsp; &nbsp; &nbsp; &nbsp; You could use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; First, write <math style="vertical-align: -14px">\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; First, write &nbsp;<math style="vertical-align: -14px">\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Now, let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; Now, let &nbsp;<math style="vertical-align: -5px">u=\cos(x).</math>&nbsp; Then, &nbsp;<math style="vertical-align: -5px">du=-\sin(x)dx.</math>  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Thus,  
 
|&nbsp; &nbsp; &nbsp; &nbsp; Thus,  
Line 51: Line 47:
 
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math>  
 
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math>  
 
|-
 
|-
|Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have  
+
|Since &nbsp;<math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math>&nbsp; we have  
 
|-
 
|-
 
|
 
|
Line 64: Line 60:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we need to use <math>u</math>-substitution for the first integral.  
+
|Now, we need to use &nbsp;<math>u</math>-substitution for the first integral.  
 
|-
 
|-
 
|
 
|
Let <math style="vertical-align: -5px">u=\tan(x).</math>  
+
Let &nbsp;<math style="vertical-align: -5px">u=\tan(x).</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math>  
+
|Then, &nbsp;<math style="vertical-align: -1px">du=\sec^2x~dx.</math>  
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 86: Line 82:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|For the remaining integral, we also need to use <math>u</math>-substitution.  
+
|For the remaining integral, we also need to use &nbsp;<math>u</math>-substitution.  
 
|-
 
|-
 
|First, we write  
 
|First, we write  
Line 93: Line 89:
 
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math>
 
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math>
 
|-
 
|-
|Now, we let <math style="vertical-align: 0px">u=\cos x.</math>  
+
|Now, we let &nbsp;<math style="vertical-align: 0px">u=\cos x.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math>  
+
|Then, &nbsp;<math style="vertical-align: -1px">du=-\sin x~dx.</math>  
 
|-
 
|-
 
|Therefore, we get  
 
|Therefore, we get  
Line 113: Line 109:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|One of the double angle formulas is <math style="vertical-align: -5px">\cos(2x)=1-2\sin^2(x).</math>  
+
|One of the double angle formulas is &nbsp;<math style="vertical-align: -5px">\cos(2x)=1-2\sin^2(x).</math>  
 
|-
 
|-
|Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get  
+
|Solving for &nbsp;<math style="vertical-align: -5px">\sin^2(x),</math>&nbsp; we get  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math>
Line 145: Line 141:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution.  
+
|For the remaining integral, we need to use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let <math style="vertical-align: -1px">u=2x.</math>  
+
|Let &nbsp;<math style="vertical-align: -1px">u=2x.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math>  
+
|Then, &nbsp;<math style="vertical-align: -1px">du=2~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -18px">\frac{du}{2}=dx.</math>  
 
|-
 
|-
 
|Also, since this is a definite integral and we are using <math style="vertical-align: 0px">u</math>-substitution,  
 
|Also, since this is a definite integral and we are using <math style="vertical-align: 0px">u</math>-substitution,  
Line 155: Line 151:
 
|we need to change the bounds of integration.  
 
|we need to change the bounds of integration.  
 
|-
 
|-
|We have <math style="vertical-align: -5px">u_1=2(0)=0</math> and <math style="vertical-align: -5px">u_2=2(\pi)=2\pi.</math>
+
|We have &nbsp;<math style="vertical-align: -5px">u_1=2(0)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">u_2=2(\pi)=2\pi.</math>
 
|-
 
|-
 
|So, the integral becomes
 
|So, the integral becomes

Revision as of 18:44, 26 February 2017

Evaluate the indefinite and definite integrals.

(a)  

(b)  


Foundations:  
1. Recall the trig identity  
2. Recall the trig identity  
3. How would you integrate  

        You could use  -substitution.

        First, write  

        Now, let    Then,  

        Thus,

       


Solution:

(a)

Step 1:  
We start by writing

       

Since    we have

       

Step 2:  
Now, we need to use  -substitution for the first integral.

Let  

Then,  
So, we have

       

Step 3:  
For the remaining integral, we also need to use  -substitution.
First, we write

       

Now, we let  
Then,  
Therefore, we get

       

(b)

Step 1:  
One of the double angle formulas is  
Solving for    we get
       
Plugging this identity into our integral, we get

       

Step 2:  
If we integrate the first integral, we get

       

Step 3:  
For the remaining integral, we need to use  -substitution.
Let  
Then,    and  
Also, since this is a definite integral and we are using -substitution,
we need to change the bounds of integration.
We have    and  
So, the integral becomes

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam