Difference between revisions of "009B Sample Midterm 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|How would you integrate <math style="vertical-align: -5px">2x(x^2+1)^3~dx?</math>
+
|How would you integrate &nbsp;<math style="vertical-align: -5px">2x(x^2+1)^3~dx?</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.  
+
&nbsp; &nbsp; &nbsp; &nbsp; You could use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -3px">u=x^2+1.</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -3px">u=x^2+1.</math>  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -1px">du=2x~dx.</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=2x~dx.</math>  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Thus,
 
|&nbsp; &nbsp; &nbsp; &nbsp; Thus,
Line 37: Line 37:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We proceed using <math style="vertical-align: 0px">u</math>-substitution.  
+
|We proceed using &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let <math style="vertical-align: -1px">u=x^3.</math>  
+
|Let &nbsp;<math style="vertical-align: -1px">u=x^3.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -1px">du=3x^2~dx</math> and <math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math>
+
|Then, &nbsp;<math style="vertical-align: -1px">du=3x^2~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math>
 
|-
 
|-
 
|Therefore, we have
 
|Therefore, we have
Line 68: Line 68:
 
|We proceed using u substitution.  
 
|We proceed using u substitution.  
 
|-
 
|-
|Let <math style="vertical-align: -5px">u=\cos(x).</math>  
+
|Let &nbsp;<math style="vertical-align: -5px">u=\cos(x).</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -5px">du=-\sin(x)~dx.</math>  
+
|Then, &nbsp;<math style="vertical-align: -5px">du=-\sin(x)~dx.</math>  
 
|-
 
|-
 
|Since this is a definite integral, we need to change the bounds of integration.  
 
|Since this is a definite integral, we need to change the bounds of integration.  
 
|-
 
|-
|We have <math style="vertical-align: -15px">u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -15px">u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}.</math>
+
|We have &nbsp;<math style="vertical-align: -15px">u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math>&nbsp; and &nbsp;<math style="vertical-align: -15px">u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}.</math>
 
|}
 
|}
  

Revision as of 18:38, 26 February 2017

Compute the following integrals:

(a)  

(b)  


Foundations:  
How would you integrate  

        You could use  -substitution.

        Let  
        Then,  
        Thus,

     


Solution:

(a)

Step 1:  
We proceed using  -substitution.
Let  
Then,    and  
Therefore, we have

       

Step 2:  
We integrate to get

       

(b)

Step 1:  
We proceed using u substitution.
Let  
Then,  
Since this is a definite integral, we need to change the bounds of integration.
We have    and  
Step 2:  
Therefore, we get

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam