Difference between revisions of "009B Sample Midterm 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 9: | Line 9: | ||
|What does Part 1 of the Fundamental Theorem of Calculus | |What does Part 1 of the Fundamental Theorem of Calculus | ||
|- | |- | ||
| − | |say is the derivative of <math style="vertical-align: -16px">G(x)=\int_x^5 \frac{1}{1+u^{10}}~du?</math> | + | |say is the derivative of <math style="vertical-align: -16px">G(x)=\int_x^5 \frac{1}{1+u^{10}}~du?</math> |
|- | |- | ||
| | | | ||
| Line 15: | Line 15: | ||
|- | |- | ||
| | | | ||
| − | So, we have <math style="vertical-align: -16px">G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math> | + | So, we have <math style="vertical-align: -16px">G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math> |
|- | |- | ||
| | | | ||
| − | By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math> | + | By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math> |
|} | |} | ||
| Line 29: | Line 29: | ||
|- | |- | ||
| | | | ||
| − | Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> | + | Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> |
|- | |- | ||
| | | | ||
| − | Then, <math style="vertical-align: -1px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> | + | Then, <math style="vertical-align: -1px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> |
|- | |- | ||
|'''The Fundamental Theorem of Calculus, Part 2''' | |'''The Fundamental Theorem of Calculus, Part 2''' | ||
|- | |- | ||
| | | | ||
| − | Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math> Then, | + | Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math> Then, |
|- | |- | ||
| | | | ||
| Line 50: | Line 50: | ||
| <math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math> | | <math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math> | ||
|- | |- | ||
| − | |Now, let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math> | + | |Now, let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math> |
|- | |- | ||
|Therefore, | |Therefore, | ||
| Line 90: | Line 90: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | | See Step 1 above |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | | ||
|- | |- | ||
| <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math> | | <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math> | ||
|} | |} | ||
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 18:36, 26 February 2017
State the fundamental theorem of calculus, and use this theorem to find the derivative of
| Foundations: |
|---|
| What does Part 1 of the Fundamental Theorem of Calculus |
| say is the derivative of |
|
First, we need to switch the bounds of integration. |
|
So, we have |
|
By Part 1 of the Fundamental Theorem of Calculus, |
Solution:
| Step 1: |
|---|
| The Fundamental Theorem of Calculus, Part 1 |
|
Let be continuous on and let |
|
Then, is a differentiable function on and |
| The Fundamental Theorem of Calculus, Part 2 |
|
Let be continuous on and let be any antiderivative of Then, |
|
|
| Step 2: |
|---|
| First, |
| Now, let and |
| Therefore, |
|
|
| Hence, |
| by the Chain Rule. |
| Step 3: |
|---|
| Now, |
| By the Fundamental Theorem of Calculus, |
|
|
| Hence, |
|
|
| Final Answer: |
|---|
| See Step 1 above |